找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variable Neighborhood Search; 7th International Co Rachid Benmansour,Angelo Sifaleras,Nenad Mladenovi Conference proceedings 2020 Springer

[復制鏈接]
樓主: graphic
31#
發(fā)表于 2025-3-27 00:12:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:10:50 | 只看該作者
Local Search Approach for the (,|,)-Centroid Problem Under , Metric,he Leader’s facilities maximizing her market share. We provide the results on the computational complexity of this problem and develop a local search heuristic, based on the VNS framework. Computational experiments on the randomly generated test instances show that the proposed approach performs well.
33#
發(fā)表于 2025-3-27 06:03:54 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:12 | 只看該作者
A Reduced Variable Neighborhood Search Approach for Feature Selection in Cancer Classification,Elimination (RFE) heuristic with a RVNS algorithm. Despite the large size of the problem instances, the suggested feature selection scheme converges within reasonably short time, when compared to similar methods. Results indicate high performance for RVNS that, is further improved when the RFE method is applied as a pre-processing step.
35#
發(fā)表于 2025-3-27 17:03:06 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:31 | 只看該作者
37#
發(fā)表于 2025-3-28 02:01:19 | 只看該作者
A Variable Neighborhood Search Algorithmic Approach for Estimating MDHMM Parameters and Application hybrid model in which VNS algorithm is coupled with Baum-Welch algorithm for parameter estimation of MDHMM, is applied in credit scoring domain, using real peer-to-peer lending data. The experiments results show the performance efficiency of our model in comparison with classical and alternative machine learning models for credit scoring.
38#
發(fā)表于 2025-3-28 04:52:39 | 只看該作者
Daily Scheduling and Routing of Home Health Care with Multiple Availability Periods of Patients,ed using CPLEX IBM. To deal with large instances a general variable neighborhood search (GVNS) based heuristic is proposed, implemented and tested using the language C++. Computational results show that the proposed heuristic could find a good solution in a very short computational time.
39#
發(fā)表于 2025-3-28 07:00:12 | 只看該作者
Optimization of Maintenance Planning and Routing Problems, Neighborhood Search that uses sequentially different neighborhood structures. The performance of our algorithms is evaluated using new generated instances. Results provide strong evidence of the effectiveness of our heuristic approach.
40#
發(fā)表于 2025-3-28 13:09:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
政和县| 甘谷县| 慈溪市| 湘西| 牡丹江市| 丁青县| 冕宁县| 肇庆市| 桂东县| 迁西县| 河津市| 沙湾县| 吉首市| 宜兰县| 渭源县| 来安县| 建平县| 大竹县| 长岛县| 吉木萨尔县| 江达县| 财经| 安义县| 土默特左旗| 池州市| 永登县| 朔州市| 项城市| 贞丰县| 洛南县| 顺平县| 紫金县| 德昌县| 宜阳县| 临澧县| 周口市| 杭州市| 武宣县| 绍兴市| 恩施市| 东山县|