找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: User Modeling, Adaptation and Personalization; 23rd International C Francesco Ricci,Kalina Bontcheva,Séamus Lawless Conference proceedings

[復(fù)制鏈接]
樓主: concession
21#
發(fā)表于 2025-3-25 07:07:59 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:25 | 只看該作者
Counteracting Anchoring Effects in Group Decision Making decision bias in the context of group decision scenarios. On the basis of the results of a user study in the domain of software requirements prioritization we discuss results regarding the optimal time when preference information of other users should be disclosed to the current user. Furthermore,
23#
發(fā)表于 2025-3-25 13:56:53 | 只看該作者
Gifting as a Novel Mechanism for Personalized Museum and Gallery Interpretationet the diverse needs of individual visitors. However, increased personalization can mean that the sociality of museum visits is overlooked. We present a new approach to resolving the tension between the personal and the social that invites visitors themselves to personalize and gift interpretations
24#
發(fā)表于 2025-3-25 17:00:52 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:19:29 | 只看該作者
Towards a Recommender Engine for Personalized Visualizationsy people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose
27#
發(fā)表于 2025-3-26 04:36:27 | 只看該作者
28#
發(fā)表于 2025-3-26 09:36:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:28:27 | 只看該作者
Where to Next? A Comparison of Recommendation Strategies for Navigating a Learning Object Repository houses over 1250 educational resources. The proposed approaches stem from three basic strategies: recommendations based on resource metadata, user behavior, and alignment to academic standards. An evaluation from subject experts suggests that usage-based recommendations are best aligned with teache
30#
發(fā)表于 2025-3-26 20:12:58 | 只看該作者
Diagrammatic Student Models: Modeling Student Drawing Performance with Deep Learningnts’ learning and increase their engagement, developing student models to dynamically support drawing holds significant promise. To this end, we introduce ., which reason about students’ drawing trajectories to generate a series of predictions about their conceptual knowledge based on their evolving
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内江市| 田东县| 长沙县| 莲花县| 台山市| 琼结县| 隆昌县| 清水河县| 德州市| 平舆县| 平潭县| 阳原县| 唐海县| 旅游| 广宗县| 陇西县| 辽源市| 富宁县| 应城市| 拜城县| 霍城县| 镇平县| 藁城市| 遵义市| 上饶县| 定边县| 农安县| 安顺市| 保德县| 南木林县| 长泰县| 岐山县| 深州市| 伊川县| 宁晋县| 台北市| 永安市| 镇江市| 涟源市| 南华县| 府谷县|