找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Unsupervised Learning Algorithms; M. Emre Celebi,Kemal Aydin Book 2016 Springer International Publishing Switzerland 2016 Big Data Pattern

[復(fù)制鏈接]
查看: 9553|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:43:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Unsupervised Learning Algorithms
編輯M. Emre Celebi,Kemal Aydin
視頻videohttp://file.papertrans.cn/943/942526/942526.mp4
概述Contains the state-of-the-art in unsupervised learning in a single comprehensive volume.Features numerous step-by-step tutorials help the reader to learn quickly
圖書封面Titlebook: Unsupervised Learning Algorithms;  M. Emre Celebi,Kemal Aydin Book 2016 Springer International Publishing Switzerland 2016 Big Data Pattern
描述.This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with?the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest includeanomaly detection, clustering, feature extraction, and applications of unsupervised learning. Each chapter is contributed by a leading expert in the field..
出版日期Book 2016
關(guān)鍵詞Big Data Patterns; Data Analytics; Data Mining; Elements Statistical Learning; Genomic Data Sets; Machine
版次1
doihttps://doi.org/10.1007/978-3-319-24211-8
isbn_softcover978-3-319-79590-4
isbn_ebook978-3-319-24211-8
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Unsupervised Learning Algorithms影響因子(影響力)




書目名稱Unsupervised Learning Algorithms影響因子(影響力)學(xué)科排名




書目名稱Unsupervised Learning Algorithms網(wǎng)絡(luò)公開度




書目名稱Unsupervised Learning Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Unsupervised Learning Algorithms被引頻次




書目名稱Unsupervised Learning Algorithms被引頻次學(xué)科排名




書目名稱Unsupervised Learning Algorithms年度引用




書目名稱Unsupervised Learning Algorithms年度引用學(xué)科排名




書目名稱Unsupervised Learning Algorithms讀者反饋




書目名稱Unsupervised Learning Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:47:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:21:21 | 只看該作者
A Radial Basis Function Neural Network Training Mechanism for Pattern Classification Tasks,d cluster centers coincide with the centers of the network’s basis functions. The method of PSO is used to estimate the neuron connecting weights involved in the learning process. The proposed classifier is applied to three machine learning data sets, and its results are compared to other relative approaches that exist in the literature.
地板
發(fā)表于 2025-3-22 06:32:54 | 只看該作者
5#
發(fā)表于 2025-3-22 10:15:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:22:11 | 只看該作者
7#
發(fā)表于 2025-3-22 20:29:22 | 只看該作者
Anomaly Ranking in a High Dimensional Space: The Unsupervised TreeRank Algorithm, surveillance, monitoring of complex systems/infrastructures such as energy networks or aircraft engines, system management in data centers). However, the learning aspect of unsupervised ranking has only received attention in the machine-learning community in the past few years. The Mass-Volume (MV)
8#
發(fā)表于 2025-3-22 21:31:11 | 只看該作者
9#
發(fā)表于 2025-3-23 03:44:06 | 只看該作者
Clustering Evaluation in High-Dimensional Data,rated cluster configurations. This is especially useful for comparing the performance of different clustering algorithms as well as determining the optimal number of clusters in clustering algorithms that do not estimate it internally. Many clustering quality indexes have been proposed over the year
10#
發(fā)表于 2025-3-23 06:21:19 | 只看該作者
Combinatorial Optimization Approaches for Data Clustering,objects belong to the same group or cluster. The greater the similarity within a cluster and the greater the dissimilarity between clusters, the better the clustering task has been performed. Starting from the 1990s, cluster analysis has emerged as an important interdisciplinary field, applied to se
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荆州市| 乐至县| 镇沅| 曲水县| 定远县| 黄梅县| 慈溪市| 巴塘县| 宁远县| 桦川县| 浮梁县| 靖远县| 万荣县| 甘洛县| 榆中县| 罗山县| 海晏县| 安阳县| 商南县| 镶黄旗| 门头沟区| 松溪县| 南江县| 栖霞市| 尼勒克县| 东明县| 铜梁县| 许昌市| 井陉县| 静安区| 平塘县| 双峰县| 武川县| 微山县| 灌云县| 孝昌县| 洞口县| 新巴尔虎左旗| 三河市| 泸州市| 巧家县|