找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universalities in Condensed Matter; Proceedings of the W Remi Jullien,Luca Peliti,Nino Boccara Conference proceedings 19881st edition Sprin

[復(fù)制鏈接]
樓主: 銀河
31#
發(fā)表于 2025-3-26 23:19:33 | 只看該作者
32#
發(fā)表于 2025-3-27 01:56:33 | 只看該作者
J.-F. Sadocre and efficient implementation, cryptographic engineering, and real-world cryptography; theoretical foundations;.Part IV: Theoretical foundations;.Part V: Multi-party computation and zero-knowledge;.Part VI: Multi-party computation and zero-knowledge; classic public key cryptography,.Part VII: Classic public key cryptography..
33#
發(fā)表于 2025-3-27 08:29:56 | 只看該作者
34#
發(fā)表于 2025-3-27 10:58:22 | 只看該作者
35#
發(fā)表于 2025-3-27 15:04:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:23 | 只看該作者
37#
發(fā)表于 2025-3-28 01:27:26 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:50 | 只看該作者
Hierarchy of Line Defects in StructuresSeveral recent descriptions of structures [1] have used a new concept: the curved space approach. This method was first described for disordered materials, and then for complex crystalline structures, including Frank and Kasper alloys, amphiphilic crystals and blue phases in cholesteric liquid crystals.
39#
發(fā)表于 2025-3-28 09:16:00 | 只看該作者
Contribution to the Theory of Quasicrystal ApproximantsWe show how to compute explicit coordinates for the vertices of a quasicrystal approximant whenever the latter is generated by mapping from n to n-1 dimensions. The structure factor is simply derived and the vertices are shown to be in a one-to-one connection with an abstract dynamical system on a n-1 dimensional torus.
40#
發(fā)表于 2025-3-28 12:57:41 | 只看該作者
Beyond Quasiperiodicity: Scaling Properties of a Fourier SpectrumHow can one destroy quasiperiodicity in a gentle way? A hint is given here by considering a prototype one-dimensional structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察雅县| 中江县| 青岛市| 松江区| 阳信县| 叙永县| 嵊州市| 怀化市| 潮安县| 珲春市| 康保县| 普宁市| 伊吾县| 同德县| 营山县| 伊春市| 万盛区| 民丰县| 满洲里市| 盈江县| 土默特左旗| 奉贤区| 武冈市| 阿瓦提县| 黄石市| 泊头市| 天台县| 孝昌县| 永善县| 科技| 密云县| 开鲁县| 嵊泗县| 会理县| 胶州市| 丰城市| 利川市| 荆州市| 商城县| 昌邑市| 开化县|