找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universalities in Condensed Matter; Proceedings of the W Remi Jullien,Luca Peliti,Nino Boccara Conference proceedings 19881st edition Sprin

[復(fù)制鏈接]
樓主: 銀河
31#
發(fā)表于 2025-3-26 23:19:33 | 只看該作者
32#
發(fā)表于 2025-3-27 01:56:33 | 只看該作者
J.-F. Sadocre and efficient implementation, cryptographic engineering, and real-world cryptography; theoretical foundations;.Part IV: Theoretical foundations;.Part V: Multi-party computation and zero-knowledge;.Part VI: Multi-party computation and zero-knowledge; classic public key cryptography,.Part VII: Classic public key cryptography..
33#
發(fā)表于 2025-3-27 08:29:56 | 只看該作者
34#
發(fā)表于 2025-3-27 10:58:22 | 只看該作者
35#
發(fā)表于 2025-3-27 15:04:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:23 | 只看該作者
37#
發(fā)表于 2025-3-28 01:27:26 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:50 | 只看該作者
Hierarchy of Line Defects in StructuresSeveral recent descriptions of structures [1] have used a new concept: the curved space approach. This method was first described for disordered materials, and then for complex crystalline structures, including Frank and Kasper alloys, amphiphilic crystals and blue phases in cholesteric liquid crystals.
39#
發(fā)表于 2025-3-28 09:16:00 | 只看該作者
Contribution to the Theory of Quasicrystal ApproximantsWe show how to compute explicit coordinates for the vertices of a quasicrystal approximant whenever the latter is generated by mapping from n to n-1 dimensions. The structure factor is simply derived and the vertices are shown to be in a one-to-one connection with an abstract dynamical system on a n-1 dimensional torus.
40#
發(fā)表于 2025-3-28 12:57:41 | 只看該作者
Beyond Quasiperiodicity: Scaling Properties of a Fourier SpectrumHow can one destroy quasiperiodicity in a gentle way? A hint is given here by considering a prototype one-dimensional structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 开原市| 澄迈县| 玛沁县| 阿瓦提县| 沙田区| 台江县| 宾川县| 磐石市| 长海县| 康定县| 怀来县| 梅州市| 台江县| 内江市| 义马市| 沐川县| 彭山县| 岳普湖县| 巴马| 寿宁县| 额敏县| 泗水县| 日土县| 杂多县| 若尔盖县| 屏东县| 增城市| 浪卡子县| 永川市| 理塘县| 会泽县| 新龙县| 修水县| 郯城县| 太湖县| 宿松县| 延长县| 蒙城县| 会昌县| 贵溪市|