找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Univalent Functions and Conformal Mapping; James A. Jenkins Book 1958Latest edition Springer-Verlag Berlin Heidelberg 1958 Analysis.Mappin

[復(fù)制鏈接]
樓主: Amalgam
11#
發(fā)表于 2025-3-23 10:07:14 | 只看該作者
12#
發(fā)表于 2025-3-23 17:31:32 | 只看該作者
13#
發(fā)表于 2025-3-23 20:02:59 | 只看該作者
14#
發(fā)表于 2025-3-24 01:38:30 | 只看該作者
Symmetrization. Multivalent Functions,me effect can be obtained by the method of symmetrization. This method also permits the extension of many results for univalent functions to the case fo multivalent functions. Of course one cannot use the General Coefficient Theorem directly in these situations but . principle again provides an associated quadratic differential.
15#
發(fā)表于 2025-3-24 02:46:56 | 只看該作者
Canonical Conformal Mappings,compactness properties of the families of functions considered. Essentially the same approach has been earlier used by . [65, 70] and . [157] but here the use of the General Coefficient Theorem provides considerable unification and simplification.
16#
發(fā)表于 2025-3-24 10:14:42 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:14 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:47:36 | 只看該作者
Canonical Conformal Mappings,o some indications in the case of infinite connectivity. The method employs certain extremal properties of the canonical configurations together with compactness properties of the families of functions considered. Essentially the same approach has been earlier used by . [65, 70] and . [157] but here
20#
發(fā)表于 2025-3-25 00:21:54 | 只看該作者
Applications of the General Coefficient Theorem. Univalent Functions,ny of these, particularly the most elementary ones, there is no mention of homotopy conditions corresponding to those which appear in the General Coefficient Theorem. The reason is that in these cases the homotopy conditions are automatically satisfied.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 21:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭平县| 伊金霍洛旗| 湖北省| 岳池县| 潞西市| 吉首市| 民乐县| 偃师市| 曲阜市| 新和县| 曲水县| 平阳县| 庆阳市| 麦盖提县| 岳普湖县| 佛山市| 昌吉市| 双桥区| 武川县| 增城市| 祁连县| 繁峙县| 义马市| 永仁县| 元朗区| 凤台县| 崇左市| 抚宁县| 萍乡市| 阳西县| 鄂托克旗| 麦盖提县| 图木舒克市| 莆田市| 来凤县| 仁寿县| 德江县| 彭州市| 合阳县| 于田县| 股票|