找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Unity of Logic and Computation; 19th Conference on C Gianluca Della Vedova,Besik Dundua,Florin Manea Conference proceedings 2023 The Editor

[復(fù)制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 10:03:28 | 只看該作者
Logic vs Topology on?Regular ,-languagesierarchy we provide a first-order sentence such that the corresponding .-language is precisely at this level. The structure of the sentence closely mimics a set-theoretic operation describing the level as a Wadge class.
12#
發(fā)表于 2025-3-23 15:49:23 | 只看該作者
13#
發(fā)表于 2025-3-23 21:27:20 | 只看該作者
On the?Complexity of?Learning Programsee that this problem is neither continuous nor computable. In algorithmic learning theory this problem is well studied from several perspectives and one question studied there is for which sequences this problem is at least learnable in the limit. Here we study the problem on all computable sequence
14#
發(fā)表于 2025-3-24 00:27:00 | 只看該作者
Conference proceedings 2023ia, during July 24–28, 2023.?.The 23 full papers and 13 invited papers included in this book were carefully reviewed and selected from 51 submissions. They were organized in topical sections as follows:.??.Degree theory;?Proof Theory;?Computability;?Algorithmic Randomness;?Computational Complexity;?
15#
發(fā)表于 2025-3-24 06:20:50 | 只看該作者
Elementarily Traceable Irrational Numbersional number that has an elementary trace function but whose ., i.e., the function that maps each positive integer . to the index of the .th 1 in the binary expansion of the number, is not elementary.
16#
發(fā)表于 2025-3-24 08:46:52 | 只看該作者
17#
發(fā)表于 2025-3-24 11:37:22 | 只看該作者
18#
發(fā)表于 2025-3-24 16:27:55 | 只看該作者
A Constructive Picture of?Noetherian Conditions and?Well Quasi-ordersand well quasi-order in the spirit of reverse mathematics with intuitionistic logic. Applying a topological semantics for intuitionistic logic, we settle a conjecture by Ray Mines; moreover, by the realizability topos of infinite-time Turing machines, we separate the ascending chain condition with finite generation from the one without.
19#
發(fā)表于 2025-3-24 20:59:12 | 只看該作者
All Melodies Are Lost – Recognizability for?Weak and?Strong ,-Register Machinesutable and .-wITRM-recognizable subsets of . are both non-empty, but disjoint, and, also for class many values of ., the set of .-wITRM-recognizable subsets of . is empty. (We thank our three anonymous referees for their valuable comments.)
20#
發(fā)表于 2025-3-25 01:50:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莱西市| 大厂| 全南县| 兴宁市| 万源市| 靖江市| 嘉荫县| 饶阳县| 民县| 遂平县| 大同市| 南溪县| 卢湾区| 佛坪县| 荣成市| 福鼎市| 叙永县| 北票市| 舞阳县| 张家川| 沂水县| 施甸县| 保定市| 枣阳市| 新蔡县| 奉节县| 新营市| 长春市| 鹤岗市| 五河县| 开化县| 襄汾县| 茶陵县| 本溪市| 沈阳市| 闸北区| 波密县| 牟定县| 金昌市| 曲靖市| 贵溪市|