找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Understanding Markov Chains; Examples and Applica Nicolas Privault Textbook 20131st edition Springer Nature Singapore Pte Ltd. 2013 Applica

[復制鏈接]
查看: 44722|回復: 52
樓主
發(fā)表于 2025-3-21 16:12:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Understanding Markov Chains
副標題Examples and Applica
編輯Nicolas Privault
視頻videohttp://file.papertrans.cn/942/941536/941536.mp4
概述Easily accessible to both mathematics and non-mathematics majors who are taking an introductory course on Stochastic Processes.Filled with numerous exercises to test students‘ understanding of key con
叢書名稱Springer Undergraduate Mathematics Series
圖書封面Titlebook: Understanding Markov Chains; Examples and Applica Nicolas Privault Textbook 20131st edition Springer Nature Singapore Pte Ltd. 2013 Applica
描述.This book provides an undergraduate introduction to discrete and?continuous-time Markov chains and their applications. A large focus is placed on the first step analysis?technique and its applications to average hitting times and ruin probabilities. Classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes, are also covered. Two major examples (gambling processes and random walks) are treated in detail from the beginning, before the general theory itself is presented in the subsequent chapters.?.An introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times is also provided, and the book includes a chapter on spatial Poisson processes with some recent results on moment identities and deviation inequalities for Poisson stochastic integrals. The concepts presented are illustrated by examples and by 72 exercises and their complete solutions..
出版日期Textbook 20131st edition
關(guān)鍵詞Applications of Stochastic Processes; Discrete and continuous-time Markov Chains; First-step analysis
版次1
doihttps://doi.org/10.1007/978-981-4451-51-2
isbn_ebook978-981-4451-51-2Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer Nature Singapore Pte Ltd. 2013
The information of publication is updating

書目名稱Understanding Markov Chains影響因子(影響力)




書目名稱Understanding Markov Chains影響因子(影響力)學科排名




書目名稱Understanding Markov Chains網(wǎng)絡(luò)公開度




書目名稱Understanding Markov Chains網(wǎng)絡(luò)公開度學科排名




書目名稱Understanding Markov Chains被引頻次




書目名稱Understanding Markov Chains被引頻次學科排名




書目名稱Understanding Markov Chains年度引用




書目名稱Understanding Markov Chains年度引用學科排名




書目名稱Understanding Markov Chains讀者反饋




書目名稱Understanding Markov Chains讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:13 | 只看該作者
Understanding Markov Chains978-981-4451-51-2Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 02:11:12 | 只看該作者
Random Walks,In this chapter we consider our second important example of discrete-time stochastic process, which is a random walk allowed to evolve over the set . of signed integers without any boundary restriction. Of particular importance are the probabilities of return to a given state in finite time, as well as the corresponding mean return time.
地板
發(fā)表于 2025-3-22 08:22:26 | 只看該作者
Discrete-Time Markov Chains,In this chapter we start the general study of discrete-time Markov chains by focusing on the Markov property and on the role played by transition probability matrices. We also include a complete study of the time evolution of the two-state chain, which represents the simplest example of Markov chain.
5#
發(fā)表于 2025-3-22 12:10:12 | 只看該作者
Long-Run Behavior of Markov Chains,This chapter is concerned with the large time behavior of Markov chains, including the computation of their limiting and stationary distributions. Here the notions of recurrence, transience, and classification of states introduced in the previous chapter play a major role.
6#
發(fā)表于 2025-3-22 15:13:01 | 只看該作者
Branching Processes,Branching processes are used as a tool for the modeling of population growth and mutation of entities such as living beings, genes, particles, etc., or the spread of epidemics. This chapter mainly deals with the computation of extinction probabilities for branching processes.
7#
發(fā)表于 2025-3-22 18:54:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:12:50 | 只看該作者
9#
發(fā)表于 2025-3-23 04:03:40 | 只看該作者
Probability Background,refer to Devore (Probability and Statistics for Engineering and the Sciences. Duxbury Press, sixth edition, .), Jacod and Protter (Probability Essentials. Springer, .), and Pitman (Probability. Springer, .) for additional probability material.
10#
發(fā)表于 2025-3-23 08:15:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 06:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
岳西县| 辽宁省| 巩义市| 垫江县| 松溪县| 乌鲁木齐县| 松阳县| 汉中市| 崇义县| 合作市| 巫溪县| 宕昌县| 宜章县| 大厂| 遂平县| 盐城市| 旬邑县| 建宁县| 聂荣县| 本溪市| 武隆县| 雅安市| 青神县| 香河县| 临安市| 成武县| 神农架林区| 娄烦县| 锦州市| 萝北县| 乐昌市| 澄迈县| 互助| 河东区| 苏尼特左旗| 岑溪市| 辰溪县| 县级市| 定结县| 通渭县| 句容市|