找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Understanding Large Language Models; Learning Their Under Thimira Amaratunga Book 2023 Thimira Amaratunga 2023 Large Language Models.Natura

[復(fù)制鏈接]
查看: 37494|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:19:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Understanding Large Language Models
副標題Learning Their Under
編輯Thimira Amaratunga
視頻videohttp://file.papertrans.cn/942/941518/941518.mp4
概述Covers the risks and threats of misinterpretations of LLMs.Discusses architectures of GPT, BERT, PaLM, and LLaMA.Explains tokenization, n-grams, recurrent networks, long short-term memory, and transfo
圖書封面Titlebook: Understanding Large Language Models; Learning Their Under Thimira Amaratunga Book 2023 Thimira Amaratunga 2023 Large Language Models.Natura
描述.This book will teach you the underlying concepts of large language models (LLMs), as well as the technologies associated with them...The book starts with an introduction to the rise of conversational AIs such as ChatGPT, and how they are related to the broader spectrum of large language models. From there, you will learn about natural language processing (NLP), its core concepts, and how it has led to the rise of LLMs. Next, you will gain insight into transformers and how their characteristics, such as self-attention, enhance the capabilities of language modeling, along with the unique capabilities of LLMs. The book concludes with an exploration of the architectures of various LLMs and the opportunities presented by their ever-increasing capabilities—as well as the dangers of their misuse...After completing this book, you will have a thorough understanding of LLMs and will be ready to take your first steps in implementing them into your own projects...?.What You Will Learn..Grasp the underlying concepts of LLMs.Gain insight into how the concepts and approaches of NLP have evolved over the years.Understand transformer models and attention mechanisms.Explore different types of LLMs
出版日期Book 2023
關(guān)鍵詞Large Language Models; Natural Language Processing; Generative AI; Transformer; ChatGPT; GPT; BARD
版次1
doihttps://doi.org/10.1007/979-8-8688-0017-7
isbn_softcover979-8-8688-0016-0
isbn_ebook979-8-8688-0017-7
copyrightThimira Amaratunga 2023
The information of publication is updating

書目名稱Understanding Large Language Models影響因子(影響力)




書目名稱Understanding Large Language Models影響因子(影響力)學(xué)科排名




書目名稱Understanding Large Language Models網(wǎng)絡(luò)公開度




書目名稱Understanding Large Language Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Understanding Large Language Models被引頻次




書目名稱Understanding Large Language Models被引頻次學(xué)科排名




書目名稱Understanding Large Language Models年度引用




書目名稱Understanding Large Language Models年度引用學(xué)科排名




書目名稱Understanding Large Language Models讀者反饋




書目名稱Understanding Large Language Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:53:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:28 | 只看該作者
tschatz des Anti-Atom-Protests. Beide Komponenten, kritisches Sprachbewu?tsein und kritischer Sprachgebrauch erobern schnell die ?ffentliche Arena, wandeln sich allerdings in diesem Proze?, wie im folgenden gezeigt werden soll.
地板
發(fā)表于 2025-3-22 08:11:04 | 只看該作者
5#
發(fā)表于 2025-3-22 12:04:33 | 只看該作者
Transformers, processing (NLP) and other sequence-to-sequence tasks in their “Attention Is All You Need” paper. In this paper, Vaswani et al. presented a new approach that relies heavily on attention mechanisms to process sequences, allowing for parallelization, efficient training, and the ability to capture long-range dependencies in data.
6#
發(fā)表于 2025-3-22 12:56:42 | 只看該作者
What Makes LLMs Large?,chanisms revolutionized the NLP field and how it changed the way we look at language modeling. Now we are ready to step into our main topic: large language models. You might be wondering what makes a large language model. Is an LLM the same as a transformer? And, more importantly, why do we call them “l(fā)arge” language models? Let’s find out.
7#
發(fā)表于 2025-3-22 20:02:48 | 只看該作者
Thimira AmaratungaMit dem Unternehmensplanspiel ?ko wird das Ziel verfolgt, einen Einblick in die Entscheidungsprozesse eines Industriebetriebes zu geben und dabei das Verh?ltnis von ?konomie und ?kologie in den Mittelpunkt zu stellen. Sowohl . als auch . Beziehungen zwischen ?konomischen und ?kologischen Aspekten werden in ?ko herausgearbeitet.
8#
發(fā)表于 2025-3-22 23:07:13 | 只看該作者
Popular LLMs,Over the past couple of chapters, we have discussed the history of NLP, its concepts, and how it evolved over time. We learned about the transformer architecture and how it revolutionized how we look at language models and paved the way for LLMs. Now, with that understanding, we should look at some of the most influential LLMs in recent years.
9#
發(fā)表于 2025-3-23 02:41:09 | 只看該作者
Thimira AmaratungaCovers the risks and threats of misinterpretations of LLMs.Discusses architectures of GPT, BERT, PaLM, and LLaMA.Explains tokenization, n-grams, recurrent networks, long short-term memory, and transfo
10#
發(fā)表于 2025-3-23 06:19:25 | 只看該作者
979-8-8688-0016-0Thimira Amaratunga 2023
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东台市| 铜鼓县| 怀集县| 简阳市| 平乐县| 昆明市| 阿荣旗| 安远县| 衡水市| 儋州市| 沁源县| 荣昌县| 辛集市| 冷水江市| 和田县| 台山市| 海安县| 富宁县| 庆元县| 邯郸县| 衢州市| 重庆市| 鄂伦春自治旗| 溧阳市| 道孚县| 库尔勒市| 五莲县| 永胜县| 彭阳县| 锡林郭勒盟| 化德县| 唐海县| 康马县| 三穗县| 德令哈市| 宁河县| 祁连县| 互助| 赤水市| 北宁市| 教育|