找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty in Biology; A Computational Mode Liesbet Geris,David Gomez-Cabrero Book 2016 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
查看: 17524|回復: 58
樓主
發(fā)表于 2025-3-21 18:19:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Uncertainty in Biology
副標題A Computational Mode
編輯Liesbet Geris,David Gomez-Cabrero
視頻videohttp://file.papertrans.cn/942/941137/941137.mp4
概述Addresses several main issues of building and validating computational models of biomedical processes.Identifies key techniques to model biomedical processes under uncertainty.Presents the main outcom
叢書名稱Studies in Mechanobiology, Tissue Engineering and Biomaterials
圖書封面Titlebook: Uncertainty in Biology; A Computational Mode Liesbet Geris,David Gomez-Cabrero Book 2016 The Editor(s) (if applicable) and The Author(s), u
描述Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: 1. Modeling establishment under uncertainty 2. Model selection and parameter fitting 3. Sensitivity analysis and model adaptation 4. Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate students and researchers active in the field of computational modeling of biomedical processes who seek to acquaint themselves with the different ways in which to study the parameter space of their model as well as its overall behavior.
出版日期Book 2016
關鍵詞Biomedical Processes; Model Fitting; Reverse Engineering; Sensitivity Analysis; approximate Bayesian inf
版次1
doihttps://doi.org/10.1007/978-3-319-21296-8
isbn_softcover978-3-319-34372-3
isbn_ebook978-3-319-21296-8Series ISSN 1868-2006 Series E-ISSN 1868-2014
issn_series 1868-2006
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Uncertainty in Biology影響因子(影響力)




書目名稱Uncertainty in Biology影響因子(影響力)學科排名




書目名稱Uncertainty in Biology網(wǎng)絡公開度




書目名稱Uncertainty in Biology網(wǎng)絡公開度學科排名




書目名稱Uncertainty in Biology被引頻次




書目名稱Uncertainty in Biology被引頻次學科排名




書目名稱Uncertainty in Biology年度引用




書目名稱Uncertainty in Biology年度引用學科排名




書目名稱Uncertainty in Biology讀者反饋




書目名稱Uncertainty in Biology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:58:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:06 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:52 | 只看該作者
In-Silico Models of Trabecular Bone: A Sensitivity Analysis Perspectivef the boundary conditions. Typical issues are highlighted and recommendations are proposed with respect to various model applications, including global stiffness/strength and local failure stress/strain behavior.
5#
發(fā)表于 2025-3-22 11:38:50 | 只看該作者
An Introduction to Uncertainty in the Development of Computational Models of Biological Processesses. The first step is model establishment under uncertainty. Once models have been established, data can further be used to select which of the proposed models best meets the predefined criteria. Subsequently, parameter values can be optimized for a specific model configuration. Sensitivity analyse
6#
發(fā)表于 2025-3-22 16:21:40 | 只看該作者
7#
發(fā)表于 2025-3-22 18:05:16 | 只看該作者
8#
發(fā)表于 2025-3-22 22:39:37 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:36 | 只看該作者
The Experimental Side of Parameter Estimationive and dynamical models, this data needs to contain time-courses as well as several perturbation experiments. This article gives an overview of and an introduction into various experimental techniques frequently used during the process of developing dynamical models of biological signalling network
10#
發(fā)表于 2025-3-23 06:41:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋州市| 陇西县| 曲松县| 汽车| 津南区| 灵寿县| 获嘉县| 台州市| 开封县| 枣庄市| 乌鲁木齐市| 阳朔县| 建宁县| 巩留县| 灵璧县| 合阳县| 永州市| 灌南县| 丰都县| 柳林县| 凤冈县| 榆树市| 茌平县| 泸定县| 兴海县| 耿马| 响水县| 松阳县| 云和县| 海伦市| 濮阳市| 合江县| 永丰县| 五原县| 青阳县| 萍乡市| 门源| 铜梁县| 余干县| 蓬莱市| 双城市|