找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Im; Second International Carole H. Sudre,

[復(fù)制鏈接]
樓主: papertrans
21#
發(fā)表于 2025-3-25 03:49:02 | 只看該作者
22#
發(fā)表于 2025-3-25 10:45:40 | 只看該作者
Improving Pathological Distribution Measurements with Bayesian Uncertaintyics the diverse and varying visual features of the original data to enable systematic experiments. With this dataset we demonstrate the robustness of the method by extracting several clinically relevant measurements with two different BNNs. Our results indicate that the distribution estimates are co
23#
發(fā)表于 2025-3-25 15:19:37 | 只看該作者
Uncertainty Estimation for Assessment of 3D US Scan Adequacy and DDH Metric Reliabilitymeasures the variability of estimates generated from an encoder-decoder type CNN optimized for hip joint localization using random dropout. We quantitatively evaluate our proposed uncertainty estimates on a clinical dataset comprising 118 neonates. Results demonstrate smaller variability in dysplasi
24#
發(fā)表于 2025-3-25 16:44:08 | 只看該作者
Clustering-Based Deep Brain MultiGraph Integrator Network for Learning Connectional Brain Templates agnostic to the cumulative estimation error from step to step. This is a key limitation that we addressed by capitalizing on the power of deep learning frameworks residing in learning an . deep mapping using a single objective function to optimize to transform input data into target output data. In
25#
發(fā)表于 2025-3-25 23:41:05 | 只看該作者
Detection of Discriminative Neurological Circuits Using Hierarchical Graph Convolutional Networks inuld identify the affected neurological circuits. We employed two datasets to evaluate the generalizability of the proposed method: ADNI dataset containing 177 AD patients and 115 controls, and Obsessive-Compulsive Disorder (OCD) dataset including 67 patients and 61 controls. The classification accur
26#
發(fā)表于 2025-3-26 00:23:38 | 只看該作者
Graph Matching Based Connectomic Biomarker with Learning for Brain Disordersa graph matching based method to quantify connectomic similarity, which can be trained for diseases at functional systems level to provide a subject-specific biomarker assessing the disease. We validate our measure on a dataset of patients with traumatic brain injury and demonstrate that our measure
27#
發(fā)表于 2025-3-26 05:15:53 | 只看該作者
Multi-scale Profiling of Brain Multigraphs by Eigen-Based Cross-diffusion and Heat Tracing for Brains kernel-based or graph distance editing methods, which fail to simultaneously satisfy graph scalability, node- and permutation-invariance criteria. To address these limitations and while cross-pollinating the fields of spectral graph theory and diffusion models, we unprecedentedly propose an eigen-
28#
發(fā)表于 2025-3-26 10:33:49 | 只看該作者
29#
發(fā)表于 2025-3-26 12:38:57 | 只看該作者
30#
發(fā)表于 2025-3-26 17:15:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 01:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽普县| 肥城市| 晋州市| 长阳| 新乐市| 梅河口市| 鄯善县| 三台县| 定远县| 上犹县| 永靖县| 获嘉县| 龙井市| 额济纳旗| 泸溪县| 蛟河市| 东乌| 南通市| 西畴县| 南澳县| 皋兰县| 荆州市| 岐山县| 枞阳县| 石门县| 德令哈市| 元朗区| 嘉善县| 开原市| 横峰县| 绥阳县| 江华| 花莲市| 河北区| 安达市| 肥东县| 莱州市| 绵阳市| 河南省| 通江县| 安多县|