找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical Image-Based Pro; First International Hayit Greenspan,

[復(fù)制鏈接]
樓主: 民俗學(xué)
21#
發(fā)表于 2025-3-25 05:48:56 | 只看該作者
22#
發(fā)表于 2025-3-25 07:57:18 | 只看該作者
Data Augmentation from Sketchween virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives.
23#
發(fā)表于 2025-3-25 14:43:48 | 只看該作者
Quantifying Uncertainty of Deep Neural Networks in Skin Lesion Classificationhe uncertainty based on the variance of the output samples. In this paper, we highlight the limitations of a variance based metric, and propose a novel uncertainty metric based on the overlap of the output distributions. We show that this yields promising results on the HAM10000 dataset for skin lesion classification.
24#
發(fā)表于 2025-3-25 17:18:44 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:48 | 只看該作者
Probabilistic Surface Reconstruction with Unknown Correspondencence. To this end, we use the Metropolis-Hastings algorithm to sample reconstructions with unknown pose and correspondence from the posterior distribution. We introduce a projection-proposal to propose shape and pose updates to the Markov-Chain, which lets us explore the posterior distribution much m
26#
發(fā)表于 2025-3-26 00:18:39 | 只看該作者
27#
發(fā)表于 2025-3-26 05:22:59 | 只看該作者
Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inferencethologies (e.g. lesions, tumours) in brain MR images. We apply the framework to two different contexts. First, we demonstrate that propagating multiple sclerosis T2 lesion segmentation results along with their associated uncertainty measures improves subsequent T2 lesion detection accuracy when eval
28#
發(fā)表于 2025-3-26 10:43:29 | 只看該作者
Reg R-CNN: Lesion Detection and Grading Under Noisy Labels, we propose Reg R-CNN, which replaces the second-stage classification model of a current object detector with a regression model. We show the superiority of our approach on a public data set with 1026 patients and a series of toy experiments. Code will be available at ..
29#
發(fā)表于 2025-3-26 13:34:30 | 只看該作者
Fast Nonparametric Mutual-Information-based Registration and Uncertainty Estimationle additional code and no external tuning. Preliminary experiments on multi-modal brain MRI images show that the proposed optimizer can be both faster and more accurate than the free-form deformation method implemented in Elastix. We also demonstrate the sampler’s ability to produce direct uncertain
30#
發(fā)表于 2025-3-26 20:07:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳西县| 侯马市| 铁岭市| 双江| 内江市| 陆丰市| 潞城市| 龙泉市| 青河县| 唐海县| 武夷山市| 宜兰市| 日照市| 永胜县| 乌海市| 浠水县| 札达县| 平谷区| 开化县| 赤壁市| 海安县| 常州市| 和田县| 昌黎县| 巴马| 宁津县| 枣阳市| 茶陵县| 永顺县| 九寨沟县| 三原县| 噶尔县| 云梦县| 英德市| 朝阳县| 剑川县| 曲麻莱县| 滦南县| 麻江县| 廉江市| 山阴县|