找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 6th International Wo Carole H. Sudre,Raghav Mehta,William M. Wells

[復(fù)制鏈接]
查看: 28623|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:30:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
副標(biāo)題6th International Wo
編輯Carole H. Sudre,Raghav Mehta,William M. Wells
視頻videohttp://file.papertrans.cn/942/941131/941131.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 6th International Wo Carole H. Sudre,Raghav Mehta,William M. Wells
描述.This book constitutes the refereed proceedings of the 6th Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 10, 2024...The 20 full papers presented in this book were carefully reviewed and selected from 28 submissions. They are organized in the following topical sections: annotation uncertainty; clinical implementation of uncertainty modelling and risk management in clinical pipelines; out of distribution and domain shift identification and management; uncertainty modelling and estimation..
出版日期Conference proceedings 2025
關(guān)鍵詞Uncertainty modelling; Medical imaging; Annotation uncertainty; Machine learning; Clinical pipelines; Out
版次1
doihttps://doi.org/10.1007/978-3-031-73158-7
isbn_softcover978-3-031-73157-0
isbn_ebook978-3-031-73158-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影響因子(影響力)




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影響因子(影響力)學(xué)科排名




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引頻次




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引頻次學(xué)科排名




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用學(xué)科排名




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging讀者反饋




書(shū)目名稱Uncertainty for Safe Utilization of Machine Learning in Medical Imaging讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:24:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:35:11 | 只看該作者
地板
發(fā)表于 2025-3-22 06:41:22 | 只看該作者
5#
發(fā)表于 2025-3-22 12:01:29 | 只看該作者
6#
發(fā)表于 2025-3-22 13:35:36 | 只看該作者
Uncertainty-Aware Bayesian Deep Learning with?Noisy Training Labels for?Epileptic Seizure Detectionground truth” information about?the target phenomena. In actuality, the labels, often derived from?human annotations, are noisy/unreliable. This . poses significant challenges for modalities such?as electroencephalography (EEG), in which “ground truth” is difficult to ascertain without invasive expe
7#
發(fā)表于 2025-3-22 18:45:17 | 只看該作者
8#
發(fā)表于 2025-3-22 23:09:34 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:23 | 只看該作者
Diagnose with?Uncertainty Awareness: Diagnostic Uncertainty Encoding Framework for?Radiology Report ance the efficiency?of radiologist decision-making. For clinical accuracy, most existing approaches focus on achieving accurate predictions of the existence of abnormalities, despite the inherent uncertainty impacting?the reliability of the generated report, which is often clarified?by radiologists
10#
發(fā)表于 2025-3-23 08:32:19 | 只看該作者
Making Deep Learning Models Clinically Useful - Improving Diagnostic Confidence in Inherited Retinale methods lack transparency?and interpretability of point predictions without assessing the quality of their outputs. Knowing how much confidence there is in?a prediction is essential for gaining clinicians’ trust in?the technology and its use in medical decision-making. In this paper,?we explore th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿荣旗| 邵阳县| 崇明县| 赤峰市| 北安市| 鱼台县| 盈江县| 太仆寺旗| 平乐县| 娱乐| 五大连池市| 乌鲁木齐市| 基隆市| 左贡县| 海淀区| 德化县| 昭觉县| 商丘市| 清远市| 凭祥市| 金川县| 江川县| 崇信县| 江山市| 郸城县| 泌阳县| 乌审旗| 米泉市| 靖州| 柳林县| 苏州市| 汝城县| 台北市| 桂平市| 高青县| 华容县| 湖州市| 建宁县| 桐乡市| 蒲城县| 古丈县|