找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty Theory; A Branch of Mathemat Baoding Liu Book 2010 Springer Berlin Heidelberg 2010 Credibility Theory.Fuzzy Sets.Random Fuzzy T

[復(fù)制鏈接]
樓主: PED
21#
發(fā)表于 2025-3-25 04:42:03 | 只看該作者
22#
發(fā)表于 2025-3-25 10:37:26 | 只看該作者
23#
發(fā)表于 2025-3-25 15:09:04 | 只看該作者
24#
發(fā)表于 2025-3-25 17:29:00 | 只看該作者
Uncertainty Theory,e age”, and “big size”. How do we understand them? Perhaps some people think that they are subjective probability or they are fuzzy concepts. However, a lot of surveys showed that those imprecise quantities behave neither like randomness nor like fuzziness. This fact provides a motivation to invent
25#
發(fā)表于 2025-3-25 21:26:34 | 只看該作者
Uncertain Programming,neral framework of uncertain programming, including expected value model, chance-constrained programming, dependent-chance programming, uncertain dynamic programming and uncertain multilevel programming. Finally, we present some uncertain programming models for project scheduling problem, vehicle ro
26#
發(fā)表于 2025-3-26 03:16:35 | 只看該作者
Uncertain Differential Equation, equation was then introduced into finance by Liu [123] in 2009. After that, an existence and uniqueness theorem of solution of uncertain differential equation was proved by Chen and Liu [17], and a stability theorem was showed by Chen [20]..This chapter will discuss the existence, uniqueness and st
27#
發(fā)表于 2025-3-26 06:43:43 | 只看該作者
Uncertain Logic,opositional logic designed by Li and Liu [96] in which the truth value of an uncertain proposition is defined as the uncertain measure that the proposition is true. An important contribution is the truth value theorem by Chen and Ralescu [18] that provides a numerical method for calculating the trut
28#
發(fā)表于 2025-3-26 09:54:33 | 只看該作者
29#
發(fā)表于 2025-3-26 13:10:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:11:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘洛县| 祁东县| 保山市| 全椒县| 福州市| 呼图壁县| 静海县| 罗定市| 托里县| 赣州市| 双鸭山市| 黄大仙区| 吴江市| 江津市| 沁水县| 庄河市| 陇川县| 礼泉县| 五台县| 西乡县| 公主岭市| 萨迦县| 闻喜县| 浠水县| 昌都县| 政和县| 开平市| 汶川县| 同仁县| 临西县| 介休市| 武乡县| 高淳县| 新兴县| 建宁县| 邻水| 宣化县| 循化| 台安县| 苏尼特右旗| 绩溪县|