找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty Quantification with R; Bayesian Methods Eduardo Souza de Cursi Book 2024 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
查看: 28131|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:13:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Uncertainty Quantification with R
副標(biāo)題Bayesian Methods
編輯Eduardo Souza de Cursi
視頻videohttp://file.papertrans.cn/942/941107/941107.mp4
概述Presents Bayesian techniques for uncertainty quantification.Uses R to solve complex, multivariate problems.Emphasizes practical applications of uncertainty quantification techniques for management and
叢書名稱International Series in Operations Research & Management Science
圖書封面Titlebook: Uncertainty Quantification with R; Bayesian Methods Eduardo Souza de Cursi Book 2024 The Editor(s) (if applicable) and The Author(s), under
描述.This book is a rigorous but practical presentation of the Bayesian techniques of uncertainty quantification, with applications in R. This volume includes mathematical arguments at the level necessary to make the presentation rigorous and the assumptions clearly established, while maintaining a focus on practical applications of Bayesian uncertainty quantification methods. Practical aspects of applied probability are also discussed, making the content accessible to students. The introduction of R allows the reader to solve more complex problems involving a more significant number of variables. Users will be able to use examples laid out in the text to solve medium-sized problems..The list of topics covered in this volume includes basic Bayesian probabilities, entropy, Bayesian estimation and decision, sequential Bayesian estimation, and numerical methods. Blending theoretical rigor and practical applications, this volume will be of interest to professionals, researchers, graduate and undergraduate students interested in the use of Bayesian uncertainty quantification techniques within the framework of operations research and mathematical programming, for applications in management a
出版日期Book 2024
關(guān)鍵詞uncertainty quantification; Bayesian estimation; R software; Bayesian methods; Bayesian Monte Carlo; MCMC
版次1
doihttps://doi.org/10.1007/978-3-031-48208-3
isbn_softcover978-3-031-48210-6
isbn_ebook978-3-031-48208-3Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Uncertainty Quantification with R影響因子(影響力)




書目名稱Uncertainty Quantification with R影響因子(影響力)學(xué)科排名




書目名稱Uncertainty Quantification with R網(wǎng)絡(luò)公開度




書目名稱Uncertainty Quantification with R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Uncertainty Quantification with R被引頻次




書目名稱Uncertainty Quantification with R被引頻次學(xué)科排名




書目名稱Uncertainty Quantification with R年度引用




書目名稱Uncertainty Quantification with R年度引用學(xué)科排名




書目名稱Uncertainty Quantification with R讀者反饋




書目名稱Uncertainty Quantification with R讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:36:15 | 只看該作者
Beliefs, in terms of degrees of belief. The basic notions are presented, with their implementation in R. It also explores the connections between beliefs and probabilities. Programs in R implement all the elements introduced, and their use is exemplified.
地板
發(fā)表于 2025-3-22 06:05:28 | 只看該作者
Maximum Entropy,stochastic processes by Karhunen-Loève expansions is presented, including their combination with Hilbert’s approach of uncertainty quantification. Implementations in R are given, and their use is exemplified.
5#
發(fā)表于 2025-3-22 12:07:08 | 只看該作者
Bayesian Inference,The choice of priors is analyzed, by using Jeffreys approach and uncertainty quantification techniques. The Expectation-Maximization Algorithm is presented in this chapter. Implementations in R are given for all the topics, with examples of use.
6#
發(fā)表于 2025-3-22 13:08:16 | 只看該作者
Sequential Bayesian Estimation,ng, Particle Filtering, and Bayesian Optimization. The use of UQ for the determination of the distribution of the noise is presented. Programs in R implement all the topics introduced, with examples of use.
7#
發(fā)表于 2025-3-22 17:45:18 | 只看該作者
8#
發(fā)表于 2025-3-22 22:01:27 | 只看該作者
9#
發(fā)表于 2025-3-23 05:14:04 | 只看該作者
0884-8289 uate and undergraduate students interested in the use of Bayesian uncertainty quantification techniques within the framework of operations research and mathematical programming, for applications in management a978-3-031-48210-6978-3-031-48208-3Series ISSN 0884-8289 Series E-ISSN 2214-7934
10#
發(fā)表于 2025-3-23 09:10:47 | 只看該作者
Book 2024ractical applications, this volume will be of interest to professionals, researchers, graduate and undergraduate students interested in the use of Bayesian uncertainty quantification techniques within the framework of operations research and mathematical programming, for applications in management a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新郑市| 万山特区| 含山县| 固阳县| 东丰县| 漠河县| 陇西县| 达日县| 开平市| 突泉县| 大足县| 林西县| 公安县| 定边县| 新沂市| 平塘县| 神池县| 南江县| 咸丰县| 嘉峪关市| 东源县| 陇西县| 桓仁| 乐都县| 宁南县| 临澧县| 安仁县| 陈巴尔虎旗| 黔江区| 北流市| 晋城| 邻水| 昆山市| 镇坪县| 滁州市| 民勤县| 苍南县| 习水县| 禹城市| 承德县| 抚远县|