找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Uncertainty Quantification for Hyperbolic and Kinetic Equations; Shi Jin,Lorenzo Pareschi Book 2017 Springer International Publishing AG,

[復制鏈接]
查看: 56171|回復: 41
樓主
發(fā)表于 2025-3-21 16:56:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations
編輯Shi Jin,Lorenzo Pareschi
視頻videohttp://file.papertrans.cn/942/941101/941101.mp4
概述The first-ever book on kinetic equations.Presents several different approaches by top authors in the field.Offers an up-to-date survey of current applications, including examples in the social science
叢書名稱SEMA SIMAI Springer Series
圖書封面Titlebook: Uncertainty Quantification for Hyperbolic and Kinetic Equations;  Shi Jin,Lorenzo Pareschi Book 2017 Springer International Publishing AG,
描述.This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts..
出版日期Book 2017
關鍵詞Kinetic equations; Hyperbolic equations; Uncertainty quantification; Galerkin methods; Monte Carlo metho
版次1
doihttps://doi.org/10.1007/978-3-319-67110-9
isbn_softcover978-3-030-09790-5
isbn_ebook978-3-319-67110-9Series ISSN 2199-3041 Series E-ISSN 2199-305X
issn_series 2199-3041
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations影響因子(影響力)




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations影響因子(影響力)學科排名




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations網(wǎng)絡公開度




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations網(wǎng)絡公開度學科排名




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations被引頻次




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations被引頻次學科排名




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations年度引用




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations年度引用學科排名




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations讀者反饋




書目名稱Uncertainty Quantification for Hyperbolic and Kinetic Equations讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:29:14 | 只看該作者
2199-3041 rrent applications, including examples in the social science.This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-lev
板凳
發(fā)表于 2025-3-22 02:47:30 | 只看該作者
地板
發(fā)表于 2025-3-22 05:12:35 | 只看該作者
Uncertainty Quantification for Kinetic Equations,e, construction of efficient stochastic Galerkin methods, and handling of multiple scales by stochastic asymptotic-preserving schemes. The examples used to illustrate the main ideas include the random linear and nonlinear Boltzmann equations, linear transport equation and the Vlasov-Poisson-Fokker-Planck equations.
5#
發(fā)表于 2025-3-22 09:46:42 | 只看該作者
6#
發(fā)表于 2025-3-22 15:41:26 | 只看該作者
7#
發(fā)表于 2025-3-22 18:11:10 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:52 | 只看該作者
Book 2017ods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts..
9#
發(fā)表于 2025-3-23 03:11:56 | 只看該作者
From Uncertainty Propagation in Transport Equations to Kinetic Polynomials,merical illustrations show the properties of these new techniques. A surprising linked to quaternion algebras is evoked in relation with kinetic polynomials. Natural limitations are discussed in the conclusion.
10#
發(fā)表于 2025-3-23 08:53:32 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 04:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
买车| 称多县| 汶川县| 通河县| 诸暨市| 项城市| 勐海县| 新绛县| 乌鲁木齐市| 柳州市| 益阳市| 福鼎市| 凤城市| 巴马| 龙州县| 平原县| 东港市| 太康县| 若羌县| 云浮市| 湘阴县| 湘西| 探索| 沾化县| 巩留县| 炉霍县| 哈尔滨市| 南通市| 唐海县| 千阳县| 亳州市| 遂川县| 科尔| 商水县| 博白县| 南召县| 印江| 德兴市| 云霄县| 右玉县| 百色市|