找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ubiquitous Security; Second International Guojun Wang,Kim-Kwang Raymond Choo,Ernesto Damiani Conference proceedings 2023 The Editor(s) (if

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:50:59 | 只看該作者
https://doi.org/10.1007/978-981-99-0272-9artificial intelligence; computer security; authentification; computer crime; machine learning; computer
12#
發(fā)表于 2025-3-23 15:23:25 | 只看該作者
Wanyi Gu,Guojun Wang,Peiqiang Li,Xubin Li,Guangxin Zhai,Xiangbin Li,Mingfei Chentrong-coupling problem. Namely it is the QED theory, where the correspondent problem of the “Landau pole” or the “Moscow zero” of the beta-function have led to the well known discussion about the common base of the quantum field theory.
13#
發(fā)表于 2025-3-23 19:10:06 | 只看該作者
14#
發(fā)表于 2025-3-24 02:10:10 | 只看該作者
15#
發(fā)表于 2025-3-24 05:21:52 | 只看該作者
16#
發(fā)表于 2025-3-24 07:22:08 | 只看該作者
Detecting Unknown Vulnerabilities in?Smart Contracts with?Multi-Label Classification Model Using CNNiLSTM model. Our model determines whether a vulnerability is unknown by detecting the opcode sequence representing the entire execution process of a transaction. Experimental results with the opcode sequences of transactions show that the model can achieve 82.86% accuracy and 83.63% F1-score.
17#
發(fā)表于 2025-3-24 11:54:24 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:24 | 只看該作者
Detecting Unknown Vulnerabilities in?Smart Contracts with?Binary Classification Model Using Machine inally, we validate the effectiveness of our scheme by three machine learning models, namely the K-Near Neighbor Algorithm (KNN), the Support Vector Machine (SVM), and the Logistic Regression (LR). The SVM model achieves an accuracy of 91.4% and F1-score of 75.3% for the detection of unknown vulnerabilities.
19#
發(fā)表于 2025-3-24 19:40:58 | 只看該作者
Hierarchical Policies of?Subgoals for?Safe Deep Reinforcement Learningper, we combine the subgoal embedding method with REINFORCE algorithm and PPO(Proximal Policy Optimization) algorithm to test the method in the MiniGrid-DoorKey game environment of the gym platform. The experiments demonstrate the effectiveness of the subgoal embedding method.
20#
發(fā)表于 2025-3-25 00:59:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
碌曲县| 昆山市| 宝坻区| 嵊泗县| 布尔津县| 翁源县| 乌兰察布市| 浙江省| 新营市| 肥东县| 中宁县| 宜阳县| 轮台县| 章丘市| 德令哈市| 霍州市| 汨罗市| 通州区| 商河县| 渝北区| 云霄县| 金川县| 都兰县| 平定县| 崇仁县| 南郑县| 西丰县| 辉县市| 栾川县| 娄底市| 精河县| 巴林右旗| 陆川县| 达孜县| 墨玉县| 凤城市| 杭州市| 齐齐哈尔市| 普兰县| 化隆| 墨江|