找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Twelve Sporadic Groups; Robert L. Griess Book 1998 Springer-Verlag Berlin Heidelberg 1998 Group theory.Lattice.algebra.infinite families.s

[復制鏈接]
查看: 48898|回復: 35
樓主
發(fā)表于 2025-3-21 16:57:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Twelve Sporadic Groups
編輯Robert L. Griess
視頻videohttp://file.papertrans.cn/932/931200/931200.mp4
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Twelve Sporadic Groups;  Robert L. Griess Book 1998 Springer-Verlag Berlin Heidelberg 1998 Group theory.Lattice.algebra.infinite families.s
描述The finite simple groups are basic objects in algebra since many questions about general finite groups can be reduced to questions about the simple groups. Finite simple groups occur naturally in certain infinite families, but not so for all of them: the exceptions are called sporadic groups, a term used in the classic book of Burnside [Bur] to refer to the five Mathieu groups. There are twenty six sporadic groups, not definitively organized by any simple theme. The largest of these is the monster, the simple group of Fischer and Griess, and twenty of the sporadic groups are involved in the monster as subquotients. These twenty constitute the Happy Family, and they occur naturally in three generations. In this book, we treat the twelve sporadics in the first two generations. I like these twelve simple groups very much, so have chosen an exposition to appreciate their beauty, linger on details and develop unifying themes in their structure theory. Most of our book is accessible to someone with a basic graduate course in abstract algebra and a little experience with group theory, especially with permu- tation groups and matrix groups. In fact, this book has been used as the basis for
出版日期Book 1998
關(guān)鍵詞Group theory; Lattice; algebra; infinite families; simple finite groups; sporadic groups
版次1
doihttps://doi.org/10.1007/978-3-662-03516-0
isbn_softcover978-3-642-08305-1
isbn_ebook978-3-662-03516-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 1998
The information of publication is updating

書目名稱Twelve Sporadic Groups影響因子(影響力)




書目名稱Twelve Sporadic Groups影響因子(影響力)學科排名




書目名稱Twelve Sporadic Groups網(wǎng)絡(luò)公開度




書目名稱Twelve Sporadic Groups網(wǎng)絡(luò)公開度學科排名




書目名稱Twelve Sporadic Groups被引頻次




書目名稱Twelve Sporadic Groups被引頻次學科排名




書目名稱Twelve Sporadic Groups年度引用




書目名稱Twelve Sporadic Groups年度引用學科排名




書目名稱Twelve Sporadic Groups讀者反饋




書目名稱Twelve Sporadic Groups讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:40 | 只看該作者
第131200主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:30:40 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:17:25 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:40:43 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:49:01 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:06:48 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:56:01 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:26:03 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:52:39 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
嵊泗县| 余庆县| 望城县| 米林县| 岳阳县| 崇明县| 白朗县| 盐津县| 嘉禾县| 安溪县| 邯郸市| 龙门县| 安国市| 含山县| 英吉沙县| 越西县| 松溪县| 新乡市| 银川市| 连江县| 泾阳县| 宁海县| 布拖县| 临高县| 长岛县| 永仁县| 玉龙| 菏泽市| 洞口县| 天祝| 丰镇市| 东明县| 长顺县| 额敏县| 呼伦贝尔市| 岱山县| 鲁山县| 大余县| 来宾市| 大冶市| 莒南县|