找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization; Dan Butnariu,Alfredo N. Iusem Book 2000 Sprin

[復(fù)制鏈接]
查看: 12226|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:21:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization
編輯Dan Butnariu,Alfredo N. Iusem
視頻videohttp://file.papertrans.cn/927/926660/926660.mp4
叢書名稱Applied Optimization
圖書封面Titlebook: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization;  Dan Butnariu,Alfredo N. Iusem Book 2000 Sprin
描述The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea- surable families of operators and optimization methods in infinite dimen- sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional
出版日期Book 2000
關(guān)鍵詞Banach Space; Convexity; Dimension; Integral equation; Optimal control; algorithms; control; functional ana
版次1
doihttps://doi.org/10.1007/978-94-011-4066-9
isbn_softcover978-94-010-5788-2
isbn_ebook978-94-011-4066-9Series ISSN 1384-6485
issn_series 1384-6485
copyrightSpringer Science+Business Media Dordrecht 2000
The information of publication is updating

書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization影響因子(影響力)




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization影響因子(影響力)學(xué)科排名




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization網(wǎng)絡(luò)公開度




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization被引頻次




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization被引頻次學(xué)科排名




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization年度引用




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization年度引用學(xué)科排名




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization讀者反饋




書目名稱Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:13 | 只看該作者
第126660主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:00:22 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:38:38 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:55:13 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:13:33 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:57:54 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 01:08:27 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:34:26 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:51:17 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三都| 台中市| 西乌珠穆沁旗| 西乌| 丰原市| 通海县| 新化县| 江北区| 金寨县| 彭州市| 中牟县| 陇西县| 旅游| 临朐县| 景洪市| 会理县| 峨山| 蒙阴县| 台南市| 邛崃市| 偃师市| 泸溪县| 宁国市| 通山县| 利川市| 宁武县| 罗源县| 潼南县| 苏尼特左旗| 兴仁县| 乐平市| 湘阴县| 临高县| 金坛市| 虹口区| 论坛| 荔浦县| 宝兴县| 辛集市| 贵州省| 上饶市|