找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Topology, Geometry, and Gauge Fields; Interactions Gregory L. Naber Textbook 20001st edition Springer Science+Business Media New York 2000

[復(fù)制鏈接]
查看: 7906|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:48:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields
副標(biāo)題Interactions
編輯Gregory L. Naber
視頻videohttp://file.papertrans.cn/927/926522/926522.mp4
叢書(shū)名稱(chēng)Applied Mathematical Sciences
圖書(shū)封面Titlebook: Topology, Geometry, and Gauge Fields; Interactions Gregory L. Naber Textbook 20001st edition Springer Science+Business Media New York 2000
描述This volume is intended to carryon the program initiated in Topology, Geometry, and Gauge Fields: Foundations (henceforth, [N4]). It is written in much the same spirit and with precisely the same philosophical motivation: Mathematics and physics have gone their separate ways for nearly a century now and it is time for this to end. Neither can any longer afford to ignore the problems and insights of the other. Why are Dirac magnetic monopoles in one-to-one correspondence with the principal U(l)- bundles over S2? Why do Higgs fields fall into topological types? What led Donaldson, in 1980, to seek in the Yang-Mills equations of physics for the key that unlocks the mysteries of smooth 4-manifolds and what phys- ical insights into quantum field theory led Witten, fourteen years later, to propose the vastly simpler, but apparently equivalent Seiberg-Witten equations as an alternative? We do not presume to answer these questions here, but only to promote an atmosphere in which both mathematicians and physicists recognize the need for answers. More succinctly, we shall endeavor to provide an exposition of elementary topology and geometry that keeps one eye on the physics in which our conc
出版日期Textbook 20001st edition
關(guān)鍵詞Area; Volume; gauge theory; mathematical physics; topology; combinatorics
版次1
doihttps://doi.org/10.1007/978-1-4757-6850-3
isbn_ebook978-1-4757-6850-3Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields影響因子(影響力)




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields被引頻次




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields被引頻次學(xué)科排名




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields年度引用




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields年度引用學(xué)科排名




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields讀者反饋




書(shū)目名稱(chēng)Topology, Geometry, and Gauge Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:15 | 只看該作者
第126522主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:37:35 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:31:19 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:33:56 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:11:26 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:56:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:57:25 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:34:36 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:02:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳州市| 灵台县| 南平市| 崇阳县| 嘉鱼县| 乌兰察布市| 尉犁县| 庆云县| 上林县| 肃宁县| 江陵县| 蓝山县| 宁波市| 黄石市| 正阳县| 青岛市| 泰安市| 城步| 定结县| 香港 | 琼结县| 宜黄县| 神池县| 石林| 松滋市| 曲沃县| 喀喇沁旗| 天气| 汪清县| 金山区| 兴义市| 阿荣旗| 井研县| 高尔夫| 西宁市| 井陉县| 安阳市| 嘉鱼县| 康平县| 灵石县| 七台河市|