找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topology and Analysis; The Atiyah-Singer In B. Booss,D. D. Bleecker Textbook 1985 Springer-Verlag New York Inc. 1985 Atiyah-Singersche Inde

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:34:08 | 只看該作者
0172-5939 practical problems demand of the mathematician not only greater readi- ness for extra-mathematical applications but also more comprehensive orientations within mathematics. In applications, it is frequently less important to draw the most far-reaching conclusions from a single mathe- matical idea t
32#
發(fā)表于 2025-3-27 04:37:15 | 只看該作者
The Fredholm Alternativef the adjoint homogeneous equation F*u = 0; the inhomogeneous equation Fu = v is solvable exactly when.This statement is called the “Fredholm alternative”; its equivalence with “index F = 0” follows from Theorem 3.1.
33#
發(fā)表于 2025-3-27 07:23:44 | 只看該作者
34#
發(fā)表于 2025-3-27 13:25:55 | 只看該作者
35#
發(fā)表于 2025-3-27 16:57:59 | 只看該作者
Fredholm Operatorshigher level. The first level of mathematical abstraction leads us to the concept of the individual numbers, as indicated for example by the Arabic numerals, without as yet any undetermined symbol representing some unspecified number. This is the stage of elementary arithmetic; in algebra we use und
36#
發(fā)表于 2025-3-27 19:33:05 | 只看該作者
Algebraic Properties. Operators of Finite Rankr, the index no longer depends on the explicit form of the map, but only on the dimensions of the vector spaces between which it operates. More precisely, show that every linear map T: H → H’ where H and H’ are finite-dimensional vector spaces has index given by index T = dim H — dim H’.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 14:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 视频| 都江堰市| 财经| 玛沁县| 昌邑市| 益阳市| 通渭县| 浦县| 库伦旗| 精河县| 舞钢市| 孟村| 巢湖市| 韩城市| 武义县| 固原市| 灵璧县| 郧西县| 惠东县| 英超| 清流县| 宝兴县| 安新县| 峡江县| 会理县| 阳泉市| 含山县| 芦溪县| 中江县| 隆德县| 礼泉县| 行唐县| 黄骅市| 松江区| 平果县| 灵武市| 门头沟区| 北票市| 开封县| 龙门县|