找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems; Dumitru Motreanu,Viorica Venera Motreanu,Nikol

[復(fù)制鏈接]
樓主: TRACT
11#
發(fā)表于 2025-3-23 10:56:02 | 只看該作者
12#
發(fā)表于 2025-3-23 17:01:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:57:12 | 只看該作者
14#
發(fā)表于 2025-3-23 23:39:53 | 只看該作者
Nonlinear Elliptic Equations with Neumann Boundary Conditions,ll the results presented here bring novelties with respect to the available literature. We emphasize the specific functional setting and techniques involved in handling the Neumann problems, which are distinct in comparison with those for the Dirichlet problems. The first section of the chapter disc
15#
發(fā)表于 2025-3-24 03:16:26 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:29 | 只看該作者
Morse Theory, efficient results for the computation of critical groups that are powerful tools in the study of multiple solutions. Here an original approach is developed, and improvements of known results are shown. Notes on related literature and comments are provided in a remarks section.
18#
發(fā)表于 2025-3-24 18:00:01 | 只看該作者
Ordinary Differential Equations, term is expressed as a generalized gradient of a locally Lipschitz function. The approach is based on nonsmooth critical point theory. Comments and relevant references are given in a remarks section.
19#
發(fā)表于 2025-3-24 22:54:15 | 只看該作者
Nonlinear Elliptic Equations with Neumann Boundary Conditions,nd section focuses on nonlinear Neumann problems whose differential part is described by a general nonhomogeneous operator. The third section builds a common approach for both sublinear and superlinear cases of semilinear Neumann problems. Related comments and references are given in a remarks section.
20#
發(fā)表于 2025-3-24 23:18:10 | 只看該作者
Nonlinear Operators,gh interest in the sequel. The third section contains essential results on Nemytskii operators highlighting their main continuity and differentiability properties. Comments on the material of this chapter and related literature are given in a remarks section.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韶关市| 苍溪县| 阜康市| 抚顺市| 苏尼特右旗| 宝坻区| 海安县| 湄潭县| 凉山| 巴林左旗| 崇信县| 峨边| 锦州市| 饶平县| 增城市| 武威市| 佳木斯市| 方正县| 喀喇| 华蓥市| 荣昌县| 绥中县| 遵义县| 黑山县| 丰县| 新野县| 湘潭县| 越西县| 德令哈市| 赣榆县| 芮城县| 都江堰市| 泾源县| 榕江县| 河源市| 台山市| 灵川县| 于都县| 谢通门县| 正宁县| 阿勒泰市|