找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Insulators; Dirac Equation in Co Shun-Qing Shen Book 20121st edition Springer-Verlag Berlin Heidelberg 2012 Marjorana Fermions.

[復(fù)制鏈接]
樓主: 鳴叫大步走
21#
發(fā)表于 2025-3-25 05:57:29 | 只看該作者
Three-Dimensional Topological Insulators,Three-dimensional topological insulator is characterized by the surrounding surface states, in which electrons are well described as two-dimensional Dirac fermions. A series of materials have been discovered to be topological insulators since theoretical predictions.
22#
發(fā)表于 2025-3-25 10:58:33 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:56 | 只看該作者
Topological Superconductors and Superfluids,Superfluid phases in liquid .He are the topological ones, which have the edge or surface states just like topological insulators. Spin-triplet superconductors are potential candidates of topological superconductors.
24#
發(fā)表于 2025-3-25 18:48:37 | 只看該作者
Majorana Fermions in Topological Insulators,A Majorana fermion is a particle that is its own antiparticle. This type of particles can appear as an end state in one-dimensional topological superconductor or the bound state induced by a half-quantized vortex in two-dimensional topological superconductors.
25#
發(fā)表于 2025-3-25 23:13:00 | 只看該作者
Topological Anderson Insulator,Topological Anderson insulator is a distinct type of topological insulator, which is induced by the disorders. Its key difference from the conventional topological insulators is that its Fermi energy lies within a so-called mobility gap instead of a “real” band gap. The robustness of the edge or surface states is protected by the mobility gap.
26#
發(fā)表于 2025-3-26 02:45:35 | 只看該作者
27#
發(fā)表于 2025-3-26 05:16:20 | 只看該作者
28#
發(fā)表于 2025-3-26 09:19:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:53:15 | 只看該作者
30#
發(fā)表于 2025-3-26 17:20:44 | 只看該作者
0171-1873 archers and graduate students working in the field of topological insulators and related areas. .Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China..978-3-642-32858-9Series ISSN 0171-1873 Series E-ISSN 2197-4179
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌都县| 睢宁县| 左云县| 上思县| 阿克陶县| 玛纳斯县| 从化市| 新河县| 屯门区| 陇南市| 玛沁县| 池州市| 奉新县| 临夏县| 定兴县| 大悟县| 体育| 金乡县| 澎湖县| 宝应县| 革吉县| 井冈山市| 麟游县| 太保市| 东丽区| 芮城县| 孟津县| 邵东县| 东源县| 岳普湖县| 东宁县| 广昌县| 舒兰市| 松江区| 洞口县| 江都市| 扶绥县| 收藏| 绥中县| 徐汇区| 苗栗县|