找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topological Dimension and Dynamical Systems; Michel Coornaert Textbook 2015 Springer International Publishing Switzerland 2015 Amenable Gr

[復制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 06:24:24 | 只看該作者
Mean Topological Dimension for Continuous MapsIn this chapter, the term “dynamical system” refers to a pair (.), where . is a topological space and . a continuous map from . into itself.
22#
發(fā)表于 2025-3-25 10:53:04 | 只看該作者
Shifts and Subshifts over ,In this chapter, we introduce the shift map . on the space of bi-infinite sequences of points in a topological space ..
23#
發(fā)表于 2025-3-25 14:02:50 | 只看該作者
Applications of Mean Dimension to Embedding ProblemsIn this chapter, we prove the embedding theorem of Jaworski (Theorem?.) which asserts that every dynamical system (.,?.), where . is a homeomorphism without periodic points of a compact metrizable space . such that ., embeds in the shift ..
24#
發(fā)表于 2025-3-25 15:56:07 | 只看該作者
Amenable GroupsThis chapter is devoted to the class of amenable groups, a class of groups which contains all finite groups and all abelian groups and which is closed under several group operations, in particular taking subgroups, taking extensions, and taking direct limits.
25#
發(fā)表于 2025-3-25 21:09:45 | 只看該作者
26#
發(fā)表于 2025-3-26 03:05:14 | 只看該作者
27#
發(fā)表于 2025-3-26 07:04:28 | 只看該作者
Textbook 2015ant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts..A large number of revisions and addition
28#
發(fā)表于 2025-3-26 10:30:06 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:32 | 只看該作者
instance the structure of atomic clusters and the marriage of density functional theory with molecular dynamics and simulated annealing, have provided additiona978-1-4757-9977-4978-1-4757-9975-0Series ISSN 0258-1221
30#
發(fā)表于 2025-3-26 18:13:58 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-30 12:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
田东县| 阿合奇县| 泰来县| 桃江县| 禹州市| 海兴县| 璧山县| 罗城| 安陆市| 兰西县| 固始县| 同江市| 大荔县| 项城市| 德令哈市| 遵义县| 柘荣县| 普安县| 鄢陵县| 福贡县| 延庆县| 印江| 垫江县| 南召县| 韩城市| 屏南县| 青龙| 白水县| 太湖县| 淮滨县| 达日县| 昌江| 巩留县| 额尔古纳市| 鄱阳县| 万源市| 营口市| 伊金霍洛旗| 潼南县| 土默特右旗| 酉阳|