找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Relevance of the Time Domain to Neural Network Models; A. Ravishankar Rao,Guillermo A. Cecchi Book 2012 Springer Science+Business Medi

[復制鏈接]
查看: 40921|回復: 35
樓主
發(fā)表于 2025-3-21 16:22:27 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Relevance of the Time Domain to Neural Network Models
編輯A. Ravishankar Rao,Guillermo A. Cecchi
視頻videohttp://file.papertrans.cn/919/918429/918429.mp4
概述The book concentrates on a crucial aspect of brain modeling: the nature and functional relevance of temporal interactions in neural systems.Develops a unified view of how the time domain can be effect
叢書名稱Springer Series in Cognitive and Neural Systems
圖書封面Titlebook: The Relevance of the Time Domain to Neural Network Models;  A. Ravishankar Rao,Guillermo A. Cecchi Book 2012 Springer Science+Business Medi
描述.A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path that is being explored is to study the importance of synchronization in biological systems. Synchronization plays a critical role in the interactions between neurons in the brain, giving rise to perceptual phenomena, and explaining multiple effects such as visual contour integration, and the separation of superposed inputs...The purpose of this book is to provide a unified view of how the time domain can be effectively employed in neural network models. A first direction to consider is to deploy oscillators that model temporal firing patterns of a neuron or a group of neurons. There is a growing body of research on the use of oscillatory neural networks, and their ability to synchronize under the right conditions. Such networks of synchroni
出版日期Book 2012
版次1
doihttps://doi.org/10.1007/978-1-4614-0724-9
isbn_softcover978-1-4614-2992-0
isbn_ebook978-1-4614-0724-9Series ISSN 2363-9105 Series E-ISSN 2363-9113
issn_series 2363-9105
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱The Relevance of the Time Domain to Neural Network Models影響因子(影響力)




書目名稱The Relevance of the Time Domain to Neural Network Models影響因子(影響力)學科排名




書目名稱The Relevance of the Time Domain to Neural Network Models網(wǎng)絡公開度




書目名稱The Relevance of the Time Domain to Neural Network Models網(wǎng)絡公開度學科排名




書目名稱The Relevance of the Time Domain to Neural Network Models被引頻次




書目名稱The Relevance of the Time Domain to Neural Network Models被引頻次學科排名




書目名稱The Relevance of the Time Domain to Neural Network Models年度引用




書目名稱The Relevance of the Time Domain to Neural Network Models年度引用學科排名




書目名稱The Relevance of the Time Domain to Neural Network Models讀者反饋




書目名稱The Relevance of the Time Domain to Neural Network Models讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:11 | 只看該作者
Book 2012such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path
板凳
發(fā)表于 2025-3-22 03:32:33 | 只看該作者
地板
發(fā)表于 2025-3-22 05:12:36 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:47 | 只看該作者
The Relevance of the Time Domain to Neural Network Models
6#
發(fā)表于 2025-3-22 14:37:34 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:36 | 只看該作者
8#
發(fā)表于 2025-3-23 00:51:36 | 只看該作者
978-1-4614-2992-0Springer Science+Business Media, LLC 2012
9#
發(fā)表于 2025-3-23 04:48:40 | 只看該作者
The Relevance of the Time Domain to Neural Network Models978-1-4614-0724-9Series ISSN 2363-9105 Series E-ISSN 2363-9113
10#
發(fā)表于 2025-3-23 08:18:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
托克托县| 荔波县| 景德镇市| 浦北县| 江津市| 绥宁县| 新绛县| 连山| 兰州市| 兰考县| 红桥区| 宝丰县| 阿合奇县| 中江县| 河津市| 宜丰县| 香港| 河北区| 清丰县| 政和县| 临泽县| 阳信县| 五指山市| 东辽县| 保靖县| 白水县| 兴城市| 高州市| 隆昌县| 林芝县| 富川| 隆子县| 哈密市| 交口县| 广德县| 苍梧县| 仁寿县| 彝良县| 福泉市| 深圳市| 焦作市|