找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Pullback Equation for Differential Forms; Gyula Csató,Bernard Dacorogna,Olivier Kneuss Book 2012 Springer Science+Business Media, LLC

[復制鏈接]
查看: 25994|回復: 35
樓主
發(fā)表于 2025-3-21 18:35:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱The Pullback Equation for Differential Forms
編輯Gyula Csató,Bernard Dacorogna,Olivier Kneuss
視頻videohttp://file.papertrans.cn/919/918006/918006.mp4
概述The only book to systematically explore the equivalence of differential forms.Rigorously presents Hodge decomposition and several versions of the Poincaré lemma.Includes a very rare, extended study of
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: The Pullback Equation for Differential Forms;  Gyula Csató,Bernard Dacorogna,Olivier Kneuss Book 2012 Springer Science+Business Media, LLC
描述.An important question in geometry and analysis is to know when two .k.-forms .f .and g are equivalent through a change of variables. The problem is therefore to find a map .φ .so that it satisfies the pullback equation: .φ.*.(.g.) = .f...?.In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases .k .= 2 and .k .= .n., but much less when 3 ≤ .k .≤ .n.–1. The present monograph provides the?first comprehensive study of the equation..?.The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case .k .= .n., and then the case 1≤ .k .≤ .n.–1 with special attention on the case .k .= 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses H?lder spaces in detail; all the results presented here are essentially classical, but cannot be found in
出版日期Book 2012
關鍵詞Hodge decomposition; H?lder spaces; Poincaré lemma; equivalence of differential forms; global Darboux th
版次1
doihttps://doi.org/10.1007/978-0-8176-8313-9
isbn_ebook978-0-8176-8313-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

書目名稱The Pullback Equation for Differential Forms影響因子(影響力)




書目名稱The Pullback Equation for Differential Forms影響因子(影響力)學科排名




書目名稱The Pullback Equation for Differential Forms網絡公開度




書目名稱The Pullback Equation for Differential Forms網絡公開度學科排名




書目名稱The Pullback Equation for Differential Forms被引頻次




書目名稱The Pullback Equation for Differential Forms被引頻次學科排名




書目名稱The Pullback Equation for Differential Forms年度引用




書目名稱The Pullback Equation for Differential Forms年度引用學科排名




書目名稱The Pullback Equation for Differential Forms讀者反饋




書目名稱The Pullback Equation for Differential Forms讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:19:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:12:58 | 只看該作者
地板
發(fā)表于 2025-3-22 07:04:41 | 只看該作者
1421-1750 f the Poincaré lemma.Includes a very rare, extended study of.An important question in geometry and analysis is to know when two .k.-forms .f .and g are equivalent through a change of variables. The problem is therefore to find a map .φ .so that it satisfies the pullback equation: .φ.*.(.g.) = .f...?
5#
發(fā)表于 2025-3-22 09:26:46 | 只看該作者
Gyula Csató,Bernard Dacorogna,Olivier KneussThe only book to systematically explore the equivalence of differential forms.Rigorously presents Hodge decomposition and several versions of the Poincaré lemma.Includes a very rare, extended study of
6#
發(fā)表于 2025-3-22 14:37:46 | 只看該作者
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/t/image/918006.jpg
7#
發(fā)表于 2025-3-22 20:14:42 | 只看該作者
8#
發(fā)表于 2025-3-22 21:41:43 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:54 | 只看該作者
The Pullback Equation for Differential Forms978-0-8176-8313-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
10#
發(fā)表于 2025-3-23 08:04:23 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 16:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
房产| 长沙县| 凤城市| 海伦市| 德江县| 集贤县| 南靖县| 白玉县| 三亚市| 抚远县| 荥阳市| 聊城市| 凤城市| 凤翔县| 武平县| 内乡县| 玉林市| 资溪县| 龙海市| 吴忠市| 左权县| 邮箱| 喀喇沁旗| 定州市| 墨玉县| 庆云县| 香河县| 雅江县| 东山县| 东方市| 呼图壁县| 平利县| 勐海县| 棋牌| 吉林省| 尤溪县| 西华县| 革吉县| 邮箱| 内丘县| 旌德县|