找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Nature of Statistical Learning Theory; Vladimir N. Vapnik Book 2000Latest edition Springer Science+Business Media New York 2000 Condit

[復(fù)制鏈接]
查看: 48673|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:52:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱The Nature of Statistical Learning Theory
編輯Vladimir N. Vapnik
視頻videohttp://file.papertrans.cn/915/914610/914610.mp4
概述The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization..It considers learning as a general problem of function estimation based
叢書(shū)名稱Information Science and Statistics
圖書(shū)封面Titlebook: The Nature of Statistical Learning Theory;  Vladimir N. Vapnik Book 2000Latest edition Springer Science+Business Media New York 2000 Condit
描述The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving m
出版日期Book 2000Latest edition
關(guān)鍵詞Conditional probability; Statistical Learning; Statistical Theory; cognition; control; learning; pattern r
版次2
doihttps://doi.org/10.1007/978-1-4757-3264-1
isbn_softcover978-1-4419-3160-3
isbn_ebook978-1-4757-3264-1Series ISSN 1613-9011 Series E-ISSN 2197-4128
issn_series 1613-9011
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書(shū)目名稱The Nature of Statistical Learning Theory影響因子(影響力)




書(shū)目名稱The Nature of Statistical Learning Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱The Nature of Statistical Learning Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱The Nature of Statistical Learning Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱The Nature of Statistical Learning Theory被引頻次




書(shū)目名稱The Nature of Statistical Learning Theory被引頻次學(xué)科排名




書(shū)目名稱The Nature of Statistical Learning Theory年度引用




書(shū)目名稱The Nature of Statistical Learning Theory年度引用學(xué)科排名




書(shū)目名稱The Nature of Statistical Learning Theory讀者反饋




書(shū)目名稱The Nature of Statistical Learning Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:28 | 只看該作者
978-1-4419-3160-3Springer Science+Business Media New York 2000
板凳
發(fā)表于 2025-3-22 01:31:44 | 只看該作者
地板
發(fā)表于 2025-3-22 05:16:37 | 只看該作者
Information Science and Statisticshttp://image.papertrans.cn/t/image/914610.jpg
5#
發(fā)表于 2025-3-22 10:55:29 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:12 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:15 | 只看該作者
1613-9011 s learning as a general problem of function estimation basedThe aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and
8#
發(fā)表于 2025-3-22 22:00:26 | 只看該作者
Book 2000Latest editions that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving m
9#
發(fā)表于 2025-3-23 05:20:13 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:14 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 15:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 六安市| 陈巴尔虎旗| 昌黎县| 岑巩县| 隆安县| 云梦县| 康马县| 昌宁县| 花垣县| 镇赉县| 唐山市| 青铜峡市| 龙岩市| 广水市| 唐山市| 自治县| 北流市| 集贤县| 利川市| 名山县| 乌鲁木齐市| 麻栗坡县| 朔州市| 淳化县| 交城县| 布拖县| 酒泉市| 黄山市| 宁化县| 弋阳县| 富顺县| 永靖县| 浪卡子县| 景东| 中卫市| 顺昌县| 金阳县| 汾阳市| 荣昌县| 新余市|