找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Partial Differential Equations for Scientists and Engineers; Lokenath Debnath Textbook 2012Latest edition Springer Science+Busin

[復(fù)制鏈接]
樓主: tornado
31#
發(fā)表于 2025-3-26 22:35:59 | 只看該作者
Asymptotic Methods and Nonlinear Evolution Equations,dium. The governing equations are usually derived from conservation laws. In simple cases, these equations are hyperbolic. However, in general, the physical processes involved are so complex that the governing equations are very complicated, and hence, are not integrable by analytic methods. So, spe
32#
發(fā)表于 2025-3-27 05:11:05 | 只看該作者
33#
發(fā)表于 2025-3-27 06:54:40 | 只看該作者
Textbook 2012Latest editionerential equations and their varied and updated applications.? In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, a
34#
發(fā)表于 2025-3-27 12:43:53 | 只看該作者
Textbook 2012Latest editionomplete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide..
35#
發(fā)表于 2025-3-27 15:45:21 | 只看該作者
,The Nonlinear Schr?dinger Equation and Solitary Waves,ant interaction equations. Zakharov and Shabat (Sov. Phys. JETP 34:62–69, .) developed an ingenious inverse scattering method to show that the NLS equation is completely integrable. The NLS equation is of great importance in adding to our fundamental knowledge of the general theory of nonlinear dispersive waves.
36#
發(fā)表于 2025-3-27 19:31:44 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:08 | 只看該作者
Linear Partial Differential Equations,blems. In order to prepare the reader for study and research in nonlinear partial differential equations, a broad coverage of the essential standard material on linear partial differential equations and their applications is required.
38#
發(fā)表于 2025-3-28 05:19:57 | 只看該作者
39#
發(fā)表于 2025-3-28 08:28:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:44:09 | 只看該作者
First-Order, Quasi-linear Equations and Method of Characteristics,ird-, and higher-order equations..This chapter is concerned with first-order, quasi-linear and linear partial differential equations and their solutions by using the Lagrange method of characteristics and its generalizations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梅州市| 星子县| 唐海县| 桂林市| 泰兴市| 额尔古纳市| 昆明市| 扶风县| 琼结县| 武汉市| 林甸县| 凤山县| 铜山县| 滦南县| 大邑县| 徐州市| 夹江县| 寻甸| 湘潭市| 华宁县| 枞阳县| 谷城县| 镇巴县| 大埔区| 临猗县| 台安县| 灵寿县| 大连市| 鄂托克前旗| 楚雄市| 固原市| 宜兰市| 维西| 墨脱县| 攀枝花市| 临西县| 大丰市| 彝良县| 临江市| 河北省| 和静县|