找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Monge—Ampère Equation; Cristian E. Gutiérrez Book 20011st edition Springer Science+Business Media New York 2001 PDEs.application.diffe

[復(fù)制鏈接]
查看: 41773|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:52:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Monge—Ampère Equation
編輯Cristian E. Gutiérrez
視頻videohttp://file.papertrans.cn/915/914274/914274.mp4
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: The Monge—Ampère Equation;  Cristian E. Gutiérrez Book 20011st edition Springer Science+Business Media New York 2001 PDEs.application.diffe
描述In recent years, the study of the Monge-Ampere equation has received consider- able attention and there have been many important advances. As a consequence there is nowadays much interest in this equation and its applications. This volume tries to reflect these advances in an essentially self-contained systematic exposi- tion of the theory of weak: solutions, including recent regularity results by L. A. Caffarelli. The theory has a geometric flavor and uses some techniques from har- monic analysis such us covering lemmas and set decompositions. An overview of the contents of the book is as follows. We shall be concerned with the Monge-Ampere equation, which for a smooth function u, is given by (0.0.1) There is a notion of generalized or weak solution to (0.0.1): for u convex in a domain n, one can define a measure Mu in n such that if u is smooth, then Mu 2 has density det D u. Therefore u is a generalized solution of (0.0.1) if M u = f.
出版日期Book 20011st edition
關(guān)鍵詞PDEs; application; differential geometry; harmonic analysis; linear optimization; maximum principle; nonli
版次1
doihttps://doi.org/10.1007/978-1-4612-0195-3
isbn_softcover978-1-4612-6656-3
isbn_ebook978-1-4612-0195-3Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightSpringer Science+Business Media New York 2001
The information of publication is updating

書目名稱The Monge—Ampère Equation影響因子(影響力)




書目名稱The Monge—Ampère Equation影響因子(影響力)學(xué)科排名




書目名稱The Monge—Ampère Equation網(wǎng)絡(luò)公開(kāi)度




書目名稱The Monge—Ampère Equation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱The Monge—Ampère Equation被引頻次




書目名稱The Monge—Ampère Equation被引頻次學(xué)科排名




書目名稱The Monge—Ampère Equation年度引用




書目名稱The Monge—Ampère Equation年度引用學(xué)科排名




書目名稱The Monge—Ampère Equation讀者反饋




書目名稱The Monge—Ampère Equation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:29:04 | 只看該作者
Book 20011st editionuence there is nowadays much interest in this equation and its applications. This volume tries to reflect these advances in an essentially self-contained systematic exposi- tion of the theory of weak: solutions, including recent regularity results by L. A. Caffarelli. The theory has a geometric flav
地板
發(fā)表于 2025-3-22 04:53:28 | 只看該作者
1421-1750 s a consequence there is nowadays much interest in this equation and its applications. This volume tries to reflect these advances in an essentially self-contained systematic exposi- tion of the theory of weak: solutions, including recent regularity results by L. A. Caffarelli. The theory has a geom
5#
發(fā)表于 2025-3-22 09:05:33 | 只看該作者
6#
發(fā)表于 2025-3-22 16:53:29 | 只看該作者
7#
發(fā)表于 2025-3-22 17:29:50 | 只看該作者
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/t/image/914274.jpg
8#
發(fā)表于 2025-3-23 01:05:09 | 只看該作者
https://doi.org/10.1007/978-1-4612-0195-3PDEs; application; differential geometry; harmonic analysis; linear optimization; maximum principle; nonli
9#
發(fā)表于 2025-3-23 03:13:40 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:25:34 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定襄县| 专栏| 阿城市| 乌兰县| 哈巴河县| 通化县| 鄂州市| 宕昌县| 红河县| 漯河市| 酉阳| 蓬溪县| 交口县| 临武县| 安国市| 阜康市| 醴陵市| 会宁县| 沙洋县| 京山县| 贡嘎县| 邮箱| 北碚区| 鹿泉市| 河曲县| 古交市| 中宁县| 武邑县| 柯坪县| 库车县| 甘谷县| 湄潭县| 隆化县| 堆龙德庆县| 米易县| 贡嘎县| 泽库县| 岳阳市| 宿迁市| 抚州市| 石首市|