找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Large Flux Problem to the Navier-Stokes Equations; Global Strong Soluti Joanna Renc?awowicz,Wojciech M. Zaj?czkowski Book 2019 Springer

[復(fù)制鏈接]
查看: 18057|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:06:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Large Flux Problem to the Navier-Stokes Equations
副標(biāo)題Global Strong Soluti
編輯Joanna Renc?awowicz,Wojciech M. Zaj?czkowski
視頻videohttp://file.papertrans.cn/913/912803/912803.mp4
概述Considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow.Proves global existence of regular solutions without any restrictions on the magnit
叢書名稱Advances in Mathematical Fluid Mechanics
圖書封面Titlebook: The Large Flux Problem to the Navier-Stokes Equations; Global Strong Soluti Joanna Renc?awowicz,Wojciech M. Zaj?czkowski Book 2019 Springer
描述This monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish this, some assumptions are necessary: The flux is close to homogeneous, and the initial velocity and the external force do not change too much along the axis of the cylinder. This is achieved by utilizing a sophisticated method of deriving energy type estimates for weak solutions and global estimates for regular solutions—an approach that is wholly unique within the existing literature on the Navier-Stokes equations. To demonstrate these results, three main steps are followed: first, the existence of weak solutions is shown; next, the conditions guaranteeing the regularity of weak solutions are presented; and, lastly, global regular solutions are proven. This volume is ideal for mathematicians whose work involves the Navier-Stokes equations, and, more broadly, researchers studying fluid mechanics.
出版日期Book 2019
關(guān)鍵詞Incompressible Navier-Stokes equations; Incompressible fluid large inflow outflow; Global regular solu
版次1
doihttps://doi.org/10.1007/978-3-030-32330-1
isbn_softcover978-3-030-32329-5
isbn_ebook978-3-030-32330-1Series ISSN 2297-0320 Series E-ISSN 2297-0339
issn_series 2297-0320
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱The Large Flux Problem to the Navier-Stokes Equations影響因子(影響力)




書目名稱The Large Flux Problem to the Navier-Stokes Equations影響因子(影響力)學(xué)科排名




書目名稱The Large Flux Problem to the Navier-Stokes Equations網(wǎng)絡(luò)公開度




書目名稱The Large Flux Problem to the Navier-Stokes Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Large Flux Problem to the Navier-Stokes Equations被引頻次




書目名稱The Large Flux Problem to the Navier-Stokes Equations被引頻次學(xué)科排名




書目名稱The Large Flux Problem to the Navier-Stokes Equations年度引用




書目名稱The Large Flux Problem to the Navier-Stokes Equations年度引用學(xué)科排名




書目名稱The Large Flux Problem to the Navier-Stokes Equations讀者反饋




書目名稱The Large Flux Problem to the Navier-Stokes Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:53 | 只看該作者
2297-0320 conditions guaranteeing the regularity of weak solutions are presented; and, lastly, global regular solutions are proven. This volume is ideal for mathematicians whose work involves the Navier-Stokes equations, and, more broadly, researchers studying fluid mechanics.978-3-030-32329-5978-3-030-32330-1Series ISSN 2297-0320 Series E-ISSN 2297-0339
板凳
發(fā)表于 2025-3-22 02:54:21 | 只看該作者
地板
發(fā)表于 2025-3-22 08:25:23 | 只看該作者
Joanna Renc?awowicz,Wojciech M. Zaj?czkowskiConsiders the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow.Proves global existence of regular solutions without any restrictions on the magnit
5#
發(fā)表于 2025-3-22 10:12:17 | 只看該作者
6#
發(fā)表于 2025-3-22 13:34:33 | 只看該作者
7#
發(fā)表于 2025-3-22 20:31:32 | 只看該作者
8#
發(fā)表于 2025-3-22 21:18:40 | 只看該作者
9#
發(fā)表于 2025-3-23 05:23:58 | 只看該作者
2297-0320 of regular solutions without any restrictions on the magnitThis monograph considers the motion of incompressible fluids described by the Navier-Stokes equations with large inflow and outflow, and proves the existence of global regular solutions without any restrictions on the magnitude of the initi
10#
發(fā)表于 2025-3-23 08:20:51 | 只看該作者
Book 2019istence of global regular solutions without any restrictions on the magnitude of the initial velocity, the external force, or the flux. To accomplish this, some assumptions are necessary: The flux is close to homogeneous, and the initial velocity and the external force do not change too much along t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新泰市| 如东县| 宜阳县| 蓬莱市| 文山县| 和静县| 镇江市| 固始县| 古田县| 桑日县| 天峨县| 兴宁市| 拉萨市| 永春县| 临夏市| 东乡| 济阳县| 策勒县| 泗阳县| 海盐县| 两当县| 广宗县| 高雄市| 遂宁市| 开阳县| 清涧县| 南投县| 甘孜县| 博兴县| 广德县| 仙桃市| 正安县| 瑞丽市| 武鸣县| 涿州市| 阿鲁科尔沁旗| 体育| 于田县| 吴旗县| 华池县| 武乡县|