找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Geometric Hopf Invariant and Surgery Theory; Michael Crabb,Andrew Ranicki Book 2017 Springer International Publishing AG 2017 MSC (201

[復(fù)制鏈接]
查看: 40147|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:48:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Geometric Hopf Invariant and Surgery Theory
編輯Michael Crabb,Andrew Ranicki
視頻videohttp://file.papertrans.cn/911/910515/910515.mp4
概述Provides the homotopy theoretic foundations for surgery theory.Includes a self-contained account of the Hopf invariant in terms of Z_2-equivariant homotopy.Covers applications of the Hopf invariant to
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: The Geometric Hopf Invariant and Surgery Theory;  Michael Crabb,Andrew Ranicki Book 2017 Springer International Publishing AG 2017 MSC (201
描述.Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds...Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists..Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, withmany results old and new.?.
出版日期Book 2017
關(guān)鍵詞MSC (2010): 55Q25, 57R42; geometric Hopf invariant; manifolds; doube points of maps; double point theore
版次1
doihttps://doi.org/10.1007/978-3-319-71306-9
isbn_softcover978-3-319-89061-6
isbn_ebook978-3-319-71306-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱The Geometric Hopf Invariant and Surgery Theory影響因子(影響力)




書目名稱The Geometric Hopf Invariant and Surgery Theory影響因子(影響力)學(xué)科排名




書目名稱The Geometric Hopf Invariant and Surgery Theory網(wǎng)絡(luò)公開度




書目名稱The Geometric Hopf Invariant and Surgery Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Geometric Hopf Invariant and Surgery Theory被引頻次




書目名稱The Geometric Hopf Invariant and Surgery Theory被引頻次學(xué)科排名




書目名稱The Geometric Hopf Invariant and Surgery Theory年度引用




書目名稱The Geometric Hopf Invariant and Surgery Theory年度引用學(xué)科排名




書目名稱The Geometric Hopf Invariant and Surgery Theory讀者反饋




書目名稱The Geometric Hopf Invariant and Surgery Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:18 | 只看該作者
1439-7382 ariant homotopy.Covers applications of the Hopf invariant to.Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds...Presenting classical ideas in a modern framework, the authors carefully highlight how thei
板凳
發(fā)表于 2025-3-22 02:07:59 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/t/image/910515.jpg
地板
發(fā)表于 2025-3-22 06:36:18 | 只看該作者
5#
發(fā)表于 2025-3-22 10:32:03 | 只看該作者
978-3-319-89061-6Springer International Publishing AG 2017
6#
發(fā)表于 2025-3-22 15:02:33 | 只看該作者
The Geometric Hopf Invariant and Surgery Theory978-3-319-71306-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
7#
發(fā)表于 2025-3-22 18:01:09 | 只看該作者
Michael Crabb,Andrew RanickiProvides the homotopy theoretic foundations for surgery theory.Includes a self-contained account of the Hopf invariant in terms of Z_2-equivariant homotopy.Covers applications of the Hopf invariant to
8#
發(fā)表于 2025-3-22 23:28:56 | 只看該作者
9#
發(fā)表于 2025-3-23 04:33:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青龙| 徐闻县| 神池县| 盈江县| 宁都县| 井研县| 临清市| 文登市| 庆元县| 朝阳县| 泰宁县| 富宁县| 新龙县| 巴彦淖尔市| 布尔津县| 桂平市| 遂昌县| 大荔县| 定陶县| 陕西省| 四子王旗| 扎兰屯市| 蕲春县| 乌兰县| 江山市| 河北区| 剑阁县| 甘孜| 定襄县| 张家港市| 荣昌县| 皮山县| 航空| 集贤县| 云霄县| 靖西县| 宜城市| 陆河县| 清新县| 舟曲县| 丰县|