找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity; Paul Ramond Book 2023 The Editor(s) (if applicab

[復(fù)制鏈接]
查看: 30734|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:40:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity
編輯Paul Ramond
視頻videohttp://file.papertrans.cn/910/909766/909766.mp4
概述Nominated as an outstanding PhD thesis by the Université PSL and Observatiore de Paris.Includes a review of Isochrony in physics and a complete solution of Henon‘s isochrone problem.Provides new exten
叢書(shū)名稱Springer Theses
圖書(shū)封面Titlebook: The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity;  Paul Ramond Book 2023 The Editor(s) (if applicab
描述.The thesis tackles two distinct problems of great interest in gravitational mechanics — one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles.?.The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely ina geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits.?.The thesis is exceptional in the breadth of its scope and achievements. It
出版日期Book 2023
關(guān)鍵詞Isochrony in physics; Henon‘s isochrone problem; Gravitational wave physics; General Relativity; Two-bod
版次1
doihttps://doi.org/10.1007/978-3-031-17964-8
isbn_softcover978-3-031-17966-2
isbn_ebook978-3-031-17964-8Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity影響因子(影響力)




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity影響因子(影響力)學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity被引頻次




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity被引頻次學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity年度引用




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity年度引用學(xué)科排名




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity讀者反饋




書(shū)目名稱The First Law of Mechanics in General Relativity & Isochrone Orbits in Newtonian Gravity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:20 | 只看該作者
第109766主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:54:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:28:34 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:52:13 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:35:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:41:02 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:06:18 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:40:35 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:20:19 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 12:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新建县| 阿勒泰市| 开封市| 曲水县| 唐山市| 襄垣县| 文水县| 北川| 衡南县| 清苑县| 尉氏县| 平凉市| 宜君县| 东阿县| 渭南市| 云和县| 碌曲县| 佳木斯市| 临西县| 新巴尔虎右旗| 石泉县| 白沙| 宜阳县| 易门县| 紫阳县| 元江| 桃园县| 徐汇区| 如东县| 桂东县| 清新县| 寻甸| 盘锦市| 广灵县| 阳谷县| 临清市| 浦城县| 太和县| 西乌珠穆沁旗| 澄城县| 习水县|