找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Cohomology of Monoids; Antonio M. Cegarra,Jonathan Leech Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復(fù)制鏈接]
查看: 16615|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:23:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Cohomology of Monoids
編輯Antonio M. Cegarra,Jonathan Leech
視頻videohttp://file.papertrans.cn/907/906340/906340.mp4
概述The first thorough exposition of the Leech cohomology of monoids and its connection to other cohomologies.Delivers an updated study of the classification of coextensions of monoids and of monoidal gro
叢書名稱RSME Springer Series
圖書封面Titlebook: The Cohomology of Monoids;  Antonio M. Cegarra,Jonathan Leech Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive li
描述This monograph covers topics in the cohomology of monoids up through recent developments.? Jonathan Leech’s original monograph in the Memoirs of the American Mathematical Society dates back to 1975. This book is an organized, accessible, and self-contained account of this cohomology that includes more recent significant developments that were previously scattered among various publications, along with completely new material.? It summarizes the original Leech theory and provides a modern and thorough treatment of the cohomological classification of coextensions of both monoids and monoidal groupoids, including the case of monoids with operators. This cohomology is also compared to the classical Eilenberg-Mac Lane and Hochschild-Mitchell cohomologies.?Connections are also established with the Lausch-Loganathan cohomology theory for inverse semigroups, the Gabriel-Zisman cohomology of simplicial sets, the Wells cohomology of small categories (also known as Baues-Wirschingcohomology), Grothendieck sheaf cohomology, and finally Beck’s triple cohomology.? It also establishes connections with Grillet’s cohomology theory for commutative semigroups.?.The monograph is aimed at researchers i
出版日期Book 2024
關(guān)鍵詞Cohomology of Monoids; Cohomology of Small Categories; Coextensions of Monoids; H-Coextensions; Schützen
版次1
doihttps://doi.org/10.1007/978-3-031-50258-3
isbn_softcover978-3-031-50260-6
isbn_ebook978-3-031-50258-3Series ISSN 2509-8888 Series E-ISSN 2509-8896
issn_series 2509-8888
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱The Cohomology of Monoids影響因子(影響力)




書目名稱The Cohomology of Monoids影響因子(影響力)學(xué)科排名




書目名稱The Cohomology of Monoids網(wǎng)絡(luò)公開度




書目名稱The Cohomology of Monoids網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Cohomology of Monoids被引頻次




書目名稱The Cohomology of Monoids被引頻次學(xué)科排名




書目名稱The Cohomology of Monoids年度引用




書目名稱The Cohomology of Monoids年度引用學(xué)科排名




書目名稱The Cohomology of Monoids讀者反饋




書目名稱The Cohomology of Monoids讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:57 | 只看該作者
第106340主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:25:46 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:16:40 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:20:56 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:13:25 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:28:47 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:49:53 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:16:20 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:32:06 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延边| 博白县| 天津市| 商水县| 合山市| 湟源县| 襄樊市| 芦溪县| 延边| 凤台县| 榆林市| 江安县| 武强县| 那曲县| 招远市| 道真| 会理县| 讷河市| 米脂县| 寻乌县| 孝义市| 垫江县| 屯门区| 南陵县| 普洱| 汉沽区| 新郑市| 河曲县| 红原县| 益阳市| 师宗县| 固原市| 田林县| 会宁县| 西畴县| 岳阳县| 宁波市| 广丰县| 宜兴市| 瑞金市| 嵩明县|