找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders; Albrecht Fr?hlich Conference proceedings 1986 Spr

[復(fù)制鏈接]
查看: 36188|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:56:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders
編輯Albrecht Fr?hlich
視頻videohttp://file.papertrans.cn/901/900521/900521.mp4
叢書名稱Sitzungsberichte der Heidelberger Akademie der Wissenschaften
圖書封面Titlebook: Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders;  Albrecht Fr?hlich Conference proceedings 1986 Spr
描述We begin by making clear the meaning of the term "tame". The higher ramifi- cation groups, on the one hand, and the one-units of chain groups, on the other, are to lie in the kernels of the respective representations considered. We shall establish a very natural and very well behaved relationship between representa- tions of the two groups mentioned in the title, with all the right properties, and in particular functorial under base change and essentially preserving root numbers. All this will be done in full generality for all principal orders. The formal setup for this also throws new light on the nature of Gauss sums and in particular leads to a canonical closed formula for tame Galois Gauss sums. In many ways the "tame" and the "wild" theory have distinct features and distinct points of interest. The "wild" theory is much harder and - as far as it goes at present - technically rather complicated. On the "tame" side, once we have developed a number of new ideas, we get a complete comprehensive theory, from which technical difficulties have disappeared, and which has a naturality, and perhaps elegance, which seems rather rare in this gen,eral area. Among the principal new concept
出版日期Conference proceedings 1986
關(guān)鍵詞Area; Canon; Natural; algebra; form; kernel; presentation; similarity
版次1
doihttps://doi.org/10.1007/978-3-642-46594-9
isbn_softcover978-3-540-17340-3
isbn_ebook978-3-642-46594-9Series ISSN 0371-0165
issn_series 0371-0165
copyrightSpringer-Verlag Berlin Heidelberg 1986
The information of publication is updating

書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders影響因子(影響力)




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders影響因子(影響力)學(xué)科排名




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders網(wǎng)絡(luò)公開度




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders被引頻次




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders被引頻次學(xué)科排名




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders年度引用




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders年度引用學(xué)科排名




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders讀者反饋




書目名稱Tame Representations of Local Weil Groups and of Chain Groups of Local Principal Orders讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:04:45 | 只看該作者
第100521主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:35:40 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:36:27 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:50:28 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 12:57:43 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:17:19 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:49:34 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:38:01 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:22:42 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
简阳市| 杭锦后旗| 彭山县| 佳木斯市| 潞西市| 乐山市| 获嘉县| 皮山县| 沁源县| 凤台县| 保德县| 成武县| 大化| 黄大仙区| 新邵县| 东城区| 永新县| 莎车县| 定边县| 象山县| 洪泽县| 靖远县| 合水县| 磐石市| 南阳市| 咸丰县| 淳安县| 鲜城| 柳州市| 万载县| 兴文县| 肥东县| 志丹县| 和林格尔县| 南安市| 久治县| 土默特右旗| 鸡西市| 射洪县| 麦盖提县| 清镇市|