找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminaire de Probabilites XXII; Jacques Azéma,Marc Yor,Paul André Meyer Book 1988 Springer-Verlag GmbH Germany, part of Springer Nature 19

[復(fù)制鏈接]
樓主: Maculate
11#
發(fā)表于 2025-3-23 11:07:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:51:41 | 只看該作者
13#
發(fā)表于 2025-3-23 20:03:00 | 只看該作者
The statistical equilibrium of an isotropic stochastic flow with negative lyapounov exponents is trgeneous and isotropic, and if either the covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is “of coalescing type” (these phenomena can only occur when d≤3), then ..=0 a.s.
14#
發(fā)表于 2025-3-24 01:56:18 | 只看該作者
The statistical equilibrium of an isotropic stochastic flow with negative lyapounov exponents is tr with ..=m, which converges almost surely to a random measure ?., called the statistical equilibrium. We prove here that if the flow is spatially homogeneous and isotropic, and if either the covariance is smooth and the top Lyapounov exponent is strictly negative, or if the flow is “of coalescing ty
15#
發(fā)表于 2025-3-24 02:39:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:20 | 只看該作者
17#
發(fā)表于 2025-3-24 12:57:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:39:50 | 只看該作者
P. McGill,B. Rajeev,B. V. Raotain approximation sequences in the strong operator topology. The basic observations in this chapter are four theorems (Lemma 2.1, Theorem 2.5, Proposition 2.17, Theorem 2.7) whose proofs are unfortunately rather technical and not very instructive. For that reason we have separated these proofs from
19#
發(fā)表于 2025-3-24 19:54:27 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:52 | 只看該作者
Jacques Azéma,Marc Yor,Paul André Meyerts established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.".978-3-319-70705-1978-3-319-70706-8Series ISSN 2038-5714 Series E-ISSN 2532-3318
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垫江县| 阿拉善右旗| 揭阳市| 华宁县| 闻喜县| 桐柏县| 资中县| 木兰县| 九台市| 拉孜县| 宁远县| 侯马市| 丰原市| 福泉市| 沭阳县| 额敏县| 汝城县| 墨脱县| 黄浦区| 册亨县| 迁安市| 丰都县| 吴堡县| 调兵山市| 隆安县| 宾阳县| 那曲县| 西吉县| 太湖县| 南木林县| 宣城市| 崇州市| 习水县| 镇安县| 酒泉市| 平遥县| 中阳县| 沂南县| 双牌县| 广元市| 象州县|