找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Séminaire de Probabilités XL; Catherine Donati-Martin,Michel émery,Christophe St Book 2007 Springer-Verlag Berlin Heidelberg 2007 Maxima.S

[復(fù)制鏈接]
樓主: Ford
21#
發(fā)表于 2025-3-25 06:47:50 | 只看該作者
More Hypercontractive Bounds for Deformed Orthogonal Polynomial EnsemblesWe illustrate one further use of hypercontractivity to non-asymptotic small deviation inequalities on the largest eigenvalue of non-null Wishart matrices and deformed orthogonal polynomial ensembles.
22#
發(fā)表于 2025-3-25 09:50:02 | 只看該作者
No Multiple Collisions for Mutually Repelling Brownian ParticlesAlthough Brownian particles with small mutual electrostatic repulsion may collide, multiple collisions at positive time are always forbidden.
23#
發(fā)表于 2025-3-25 11:55:02 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:32 | 只看該作者
Catherine Donati-Martin,Michel émery,Christophe StIncludes supplementary material:
25#
發(fā)表于 2025-3-25 22:15:59 | 只看該作者
An Introduction to (Stochastic) Calculus with Respect to Fractional Brownian Motione, is the Young integral and its extension given by rough path theory; the second one is the extended Stratonovich integral introduced by Russo and Vallois; the third one is the divergence operator. For each type of integral, a change of variable formula or Ito formula is proved. Some existence and
26#
發(fā)表于 2025-3-26 01:12:27 | 只看該作者
27#
發(fā)表于 2025-3-26 07:13:22 | 只看該作者
Local Time-Space Calculus for Reversible Semimartingalesl Ito formula requiring only the existence of locally bounded first-order derivatives. We extend this construction to reversible semimartingales and show the part that it can play for extended Ito formulas. MSC 2000: 60G44, 60H05, 60J55, 60J65 Key words: Reversible Semimartingale, Stochastic calculu
28#
發(fā)表于 2025-3-26 08:41:40 | 只看該作者
29#
發(fā)表于 2025-3-26 15:48:47 | 只看該作者
30#
發(fā)表于 2025-3-26 17:08:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建瓯市| 科技| 新沂市| 和龙市| 五家渠市| 兴宁市| 南京市| 天镇县| 青川县| 高平市| 洪泽县| 隆尧县| 嘉义市| 凤庆县| 宾川县| 安溪县| 长宁区| 长岭县| 达拉特旗| 沙田区| 定结县| 乐都县| 军事| 辽阳市| 乐东| 县级市| 东兰县| 华安县| 丹江口市| 宁阳县| 华宁县| 宁都县| 昌平区| 汶上县| 广丰县| 灌云县| 六枝特区| 铁力市| 永昌县| 洪泽县| 岳西县|