找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Séminaire d‘Algèbre Paul Dubreil et Marie-Paule Malliavin; Proceedings Paris 19 Marie-Paule Malliavin Conference proceedings 1985 Springer-

[復(fù)制鏈接]
樓主: 削木頭
11#
發(fā)表于 2025-3-23 12:14:07 | 只看該作者
M. Sweedlerthis monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use t
12#
發(fā)表于 2025-3-23 14:21:35 | 只看該作者
Klaus Bongartzthis monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use t
13#
發(fā)表于 2025-3-23 21:36:35 | 只看該作者
Alain Bouvier,Marco Fontanathis monograph to expose the relationships between space weather factors and the performance (or lack thereof) of telecommunication, navigation, and surveillance systems. Space weather is a rather new term, having found an oMicial expression as the result of several government initiatives that use t
14#
發(fā)表于 2025-3-24 00:39:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:36:38 | 只看該作者
16#
發(fā)表于 2025-3-24 10:32:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:43:22 | 只看該作者
18#
發(fā)表于 2025-3-24 18:13:16 | 只看該作者
,The catenarian property of the polynomial rings over a Prüfer domain,This paper gives complete proofs of the following result: let R be a locally finite dimensional Prüfer domain; then, the polynomial ring R[T.,..,T.] is catenarian for every r?1. The main techniques used in the proof are pull-backs and a function introduced here to measure the extent to which prime ideals in polynomial domains fail to be extended.
19#
發(fā)表于 2025-3-24 19:45:26 | 只看該作者
978-3-540-15686-4Springer-Verlag Berlin Heidelberg 1985
20#
發(fā)表于 2025-3-25 00:05:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建德市| 衡阳县| 花莲县| 霍林郭勒市| 延寿县| 横峰县| 白山市| 仁布县| 隆德县| 安义县| 哈尔滨市| 灌南县| 柯坪县| 兴安盟| 常山县| 日土县| 通榆县| 盈江县| 长寿区| 大宁县| 四川省| 文昌市| 额尔古纳市| 永吉县| 龙门县| 三河市| 田阳县| 马公市| 闵行区| 康定县| 花莲市| 巍山| 定南县| 嘉祥县| 上蔡县| 上林县| 内江市| 罗甸县| 石景山区| 东辽县| 宁都县|