找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Syzygies and Homotopy Theory; F.E.A. Johnson Book 2012 Springer-Verlag London Limited 2012 D(2) problem.Milnor squares.R(2) problem.genera

[復制鏈接]
樓主: Enlightening
21#
發(fā)表于 2025-3-25 05:43:59 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:40 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:07 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:09 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:31 | 只看該作者
26#
發(fā)表于 2025-3-26 03:35:08 | 只看該作者
Group Rings of Dihedral Groupsrder 2. defined by the presentation . Our main result, first proved in Johnson (Q. J. Math., ., doi:.), is that .[..×..] has SFC when . is an odd prime. This breaks down for .=2. Although .[..×..] still has SFC (the case .=1) when .≥2 a result of O’Shea shows that .[..×..] has infinitely many isomorphically distinct stably free modules of rank 1.
27#
發(fā)表于 2025-3-26 05:14:39 | 只看該作者
Parametrizing ,,(,): Singular Casehat .. Then . is necessarily infinite. We investigate minimality of . in ..(.) and first establish: . This second criterion also applies to many cases where . although we do not need to use it there. We employ it in Sect.?. to give examples of groups . with infinite splitting in ..(.).
28#
發(fā)表于 2025-3-26 12:06:07 | 只看該作者
Conclusionis (Edwards in Ph.D. Thesis, University College London, .; in Algebr. Geom. Topol. 6:71–89, .). The account given here simplifies Edwards’ argument at a number of points. We then present some duality results for higher syzygies. We conclude by giving a survey of the current status of the .–. problem.
29#
發(fā)表于 2025-3-26 13:49:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:22:57 | 只看該作者
https://doi.org/10.1007/978-1-4471-2294-4D(2) problem; Milnor squares; R(2) problem; generalized Swan module; stable module; syzygy
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
镶黄旗| 简阳市| 武乡县| 徐闻县| 镇安县| 水富县| 阳西县| 大足县| 博乐市| 永吉县| 汕尾市| 抚宁县| 新昌县| 怀来县| 寻乌县| 马山县| 彰化市| 柳河县| 黄石市| 吴川市| 兰考县| 红河县| 台东市| 曲周县| 西吉县| 平陆县| 滦南县| 香港 | 河池市| 东光县| 芜湖市| 宜都市| 浮梁县| 巨野县| 宝丰县| 绥化市| 磐石市| 邯郸市| 民和| 虞城县| 沙洋县|