找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Symmetry Theory in Molecular Physics with Mathematica; A new kind of tutori William McClain Textbook 2008 Springer-Verlag New York 2008 Gro

[復(fù)制鏈接]
樓主: rupture
31#
發(fā)表于 2025-3-26 22:42:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:55:55 | 只看該作者
The multiplication table,air of these elements, giving .. products in all. It seems natural to display them in a square “multiplication” table. We have written a display operator for such tables, called .. Here is what it produces if we take the elements to be ., and the entries to be blanks
33#
發(fā)表于 2025-3-27 06:35:43 | 只看該作者
The point groups,ny new kind of matrix that can be generated from these by multiplication must also be accepted as a symmetry matrix on its own. In this chapter we will do exactly that, producing three new kinds of symmetry matrices that apply to molecules. That will make five kinds in all.
34#
發(fā)表于 2025-3-27 11:14:08 | 只看該作者
35#
發(fā)表于 2025-3-27 15:11:11 | 只看該作者
Recognizing matrices,y are especially simple, they look just about like any other 3-by-3 real numerical matrix filled with values between . and .. In this chapter we develop numerical tests to distinguish them, and to extract the axis and the angle. These tests are collected together in a useful operator named ., based on the following theorem
36#
發(fā)表于 2025-3-27 20:34:08 | 只看該作者
37#
發(fā)表于 2025-3-28 01:14:39 | 只看該作者
Naming the point groups,he elements of all point groups, and in Chapter 13 (RecognizeMatrix) we made operators that recognize the matrix types automatically, and in Chapter 14 (MakeMatrixGroup) we used them to generate whole groups. Now we are ready to understand the rationale behind the naming of the Point Groups.
38#
發(fā)表于 2025-3-28 04:48:40 | 只看該作者
39#
發(fā)表于 2025-3-28 08:07:44 | 只看該作者
40#
發(fā)表于 2025-3-28 13:53:37 | 只看該作者
A basic , tutorial,If you want to read this book “l(fā)ive” (as intended) you will need to read this chapter on screen and with . running, and do the things it says to do. You won’t get much out of it by just reading the hard copy, but here it is for quick reference
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦南县| 叙永县| 航空| 大关县| 商南县| 交口县| 策勒县| 肇庆市| 临江市| 中阳县| 乌兰浩特市| 当涂县| 库伦旗| 旌德县| 鄂托克前旗| 高陵县| 镇宁| 双流县| 乐清市| 平山县| 博兴县| 任丘市| 湛江市| 醴陵市| 泽普县| 德令哈市| 舞钢市| 营口市| 龙口市| 尼勒克县| 内乡县| 金塔县| 泽普县| 怀宁县| 临沂市| 张家口市| 永城市| 岑溪市| 四子王旗| 寻乌县| 昭苏县|