找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Switzerland and Migration; Historical and Curre Barbara Lüthi,Damir Skenderovic Book 2019 The Editor(s) (if applicable) and The Author(s) 2

[復(fù)制鏈接]
樓主: 小缺點
11#
發(fā)表于 2025-3-23 11:12:41 | 只看該作者
Flavia Grossmannd basic theory. With the development of Quillen‘s concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, i
12#
發(fā)表于 2025-3-23 16:46:16 | 只看該作者
respect to a homology theory, localization with respect to a map as pioneered by Bousfield, Dror-Farjoun and elaborated on by many others, and even the formation of the stable homotopy category. We will touch on all three of these subjects, but we also have another purpose. There is a body of extre
13#
發(fā)表于 2025-3-23 21:17:53 | 只看該作者
Stefan Wellgraffields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic..While strict .n.-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The
14#
發(fā)表于 2025-3-23 23:30:10 | 只看該作者
Marisa Foistive introductions to new concepts, which would otherwise re.This monograph presents a new model of mathematical structures called weak .n.-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematic
15#
發(fā)表于 2025-3-24 02:21:43 | 只看該作者
Angela Sanderstive introductions to new concepts, which would otherwise re.This monograph presents a new model of mathematical structures called weak .n.-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematic
16#
發(fā)表于 2025-3-24 07:59:23 | 只看該作者
17#
發(fā)表于 2025-3-24 12:42:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:00:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:32:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:48:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万全县| 曲水县| 民丰县| 柳江县| 长顺县| 固安县| 涿州市| 镇巴县| 岫岩| 甘德县| 广饶县| 黎平县| 荃湾区| 洛南县| 师宗县| 谢通门县| 新龙县| 临清市| 富裕县| 泸西县| 寻乌县| 扎赉特旗| 淄博市| 鄂尔多斯市| 敦化市| 手机| 资源县| 乌什县| 镇雄县| 额济纳旗| 渑池县| 京山县| 普兰县| 农安县| 宁远县| 清丰县| 丹棱县| 马尔康县| 屯门区| 大足县| 泗洪县|