找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Survey of Text Mining; Clustering, Classifi Michael W. Berry Book 2004 Springer Science+Business Media New York 2004 algorithms.behavior.cl

[復(fù)制鏈接]
查看: 20167|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:08:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Survey of Text Mining
副標(biāo)題Clustering, Classifi
編輯Michael W. Berry
視頻videohttp://file.papertrans.cn/883/882667/882667.mp4
概述Includes supplementary material:
圖書封面Titlebook: Survey of Text Mining; Clustering, Classifi Michael W. Berry Book 2004 Springer Science+Business Media New York 2004 algorithms.behavior.cl
描述.Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory...As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments...This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text..
出版日期Book 2004
關(guān)鍵詞algorithms; behavior; classification; clustering; data mining; information extraction; information retriev
版次1
doihttps://doi.org/10.1007/978-1-4757-4305-0
isbn_softcover978-1-4419-3057-6
isbn_ebook978-1-4757-4305-0
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱Survey of Text Mining影響因子(影響力)




書目名稱Survey of Text Mining影響因子(影響力)學(xué)科排名




書目名稱Survey of Text Mining網(wǎng)絡(luò)公開度




書目名稱Survey of Text Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Survey of Text Mining被引頻次




書目名稱Survey of Text Mining被引頻次學(xué)科排名




書目名稱Survey of Text Mining年度引用




書目名稱Survey of Text Mining年度引用學(xué)科排名




書目名稱Survey of Text Mining讀者反饋




書目名稱Survey of Text Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:56:30 | 只看該作者
地板
發(fā)表于 2025-3-22 05:33:51 | 只看該作者
Simultaneous Clustering and Dynamic Keyword Weighting for Text Documents keyword weighting. The proposed algorithm is based on the K-Means clustering algorithm. Hence it is computationally and implementationally simple. Moreover, it learns a different set of keyword weights for each cluster. This means that, as a by-product of the clustering process, each document clust
5#
發(fā)表于 2025-3-22 10:44:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:50:40 | 只看該作者
7#
發(fā)表于 2025-3-22 20:00:10 | 只看該作者
HotMiner: Discovering Hot Topics from Dirty Textmation needs along with their associated documents. This valuable information gives companies the potential of reducing costs and being more competitive and responsive to their customers’ needs. In particular, technical support centers could drastically lower the number of support engineers by knowi
8#
發(fā)表于 2025-3-22 22:28:47 | 只看該作者
Combining Families of Information Retrieval Algorithms Using Metalearningmalizations and similarity functions. By metalearning, we mean the following simple idea: a family of IR algorithms is applied to a corpus of documents in which relevance is known to produce a learning set. A machine learning algorithm is then applied to this data set to produce a classifier that co
9#
發(fā)表于 2025-3-23 02:49:37 | 只看該作者
10#
發(fā)表于 2025-3-23 06:13:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 琼海市| 大丰市| 鹤壁市| 鄂伦春自治旗| 山东| 安国市| 峨眉山市| 宝兴县| 桐庐县| 玛沁县| 内丘县| 荥阳市| 乌拉特后旗| 元阳县| 宁阳县| 灵璧县| 康平县| 枝江市| 大埔区| 京山县| 紫云| 许昌县| 班玛县| 大名县| 长沙市| 辛集市| 泌阳县| 乐业县| 大同市| 怀远县| 广汉市| 甘肃省| 北碚区| 洪雅县| 读书| 元氏县| 浦东新区| 南江县| 威海市| 东台市|