找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Supermathematics and its Applications in Statistical Physics; Grassmann Variables Franz Wegner Book 2016 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 次要
21#
發(fā)表于 2025-3-25 04:35:55 | 只看該作者
Grassmann AnalysisDifferentiation and integration of Grassmann variables are introduced. Application is made to Gauss integrals. A second part to exterior algebra follows.
22#
發(fā)表于 2025-3-25 09:57:55 | 只看該作者
23#
發(fā)表于 2025-3-25 13:46:20 | 只看該作者
24#
發(fā)表于 2025-3-25 19:30:10 | 只看該作者
Two-Dimensional Ising ModelThe solution of the two-dimensional Ising model on the square lattice is presented. The logarithmic divergence of the specific heat at the critical point is derived. The boundary tension in the ordered phase is determined. Duality arguments allow the determination of the exponential decay of the spin-spin correlation in the paramagnetic phase.
25#
發(fā)表于 2025-3-25 23:07:40 | 只看該作者
26#
發(fā)表于 2025-3-26 00:43:22 | 只看該作者
Supersymmetric MatricesThe generalization of symmetric and anti-symmetric matrices to supermatrices is introduced. The Gauss integral over both even and odd variables yields the superpfaffian. Orthosymplectic transformations and groups are generalizations of the orthogonal transformations and groups.
27#
發(fā)表于 2025-3-26 05:23:15 | 只看該作者
28#
發(fā)表于 2025-3-26 08:43:29 | 只看該作者
Superreal Matrices, Unitary-Orthosymplectic GroupsThere are no real odd elements under the conjugation of the second kind. However, the introduction of pairs of odd elements (spinors) in matrices allows the definition of superreal supermatrices. The corresponding unitary-orthosymplectic group and its pseudo-form are introduced.
29#
發(fā)表于 2025-3-26 14:40:20 | 只看該作者
30#
發(fā)表于 2025-3-26 20:01:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林西县| 徐汇区| 左权县| 类乌齐县| 大同县| 汤阴县| 遂昌县| 同德县| 天长市| 安泽县| 广宗县| 资源县| 天台县| 屏东市| 长岛县| 额尔古纳市| 神农架林区| 衡阳县| 津南区| 雷波县| 泾阳县| 耿马| 丰顺县| 桑日县| 德兴市| 陕西省| 淮阳县| 科技| 宁国市| 英德市| 章丘市| 公安县| 沾化县| 鹿邑县| 定陶县| 勃利县| 青岛市| 黑龙江省| 黎川县| 九台市| 延庆县|