找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Adam Krzyzak,Ching Y. Suen,Nicola Nobile Conference procee

[復(fù)制鏈接]
查看: 29017|回復(fù): 66
樓主
發(fā)表于 2025-3-21 20:05:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition
副標(biāo)題Joint IAPR Internati
編輯Adam Krzyzak,Ching Y. Suen,Nicola Nobile
視頻videohttp://file.papertrans.cn/881/880083/880083.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Structural, Syntactic, and Statistical Pattern Recognition; Joint IAPR Internati Adam Krzyzak,Ching Y. Suen,Nicola Nobile Conference procee
描述This book constitutes the proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2022, held in Montreal, QC, Canada, in August 2022..The 30 papers together with 2 invited talks presented in this volume were carefully reviewed and selected from 50 submissions. The workshops presents papers on topics such as deep learning, processing, computer vision, machine learning and pattern recognition and much more. .
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; computer networks; computer science; computer systems; computer vision; database
版次1
doihttps://doi.org/10.1007/978-3-031-23028-8
isbn_softcover978-3-031-23027-1
isbn_ebook978-3-031-23028-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition影響因子(影響力)




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition被引頻次




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition被引頻次學(xué)科排名




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition年度引用




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition年度引用學(xué)科排名




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition讀者反饋




書(shū)目名稱(chēng)Structural, Syntactic, and Statistical Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:35:09 | 只看該作者
,Annotation-Free Keyword Spotting in?Historical Vietnamese Manuscripts Using Graph Matching,orical Vietnamese manuscripts containing 719 scanned pages of the famous Tale of Kieu. Our results show that search terms can be found with promising precision both when providing handwritten samples (query by example) as well as printed characters (query by string).
地板
發(fā)表于 2025-3-22 06:45:22 | 只看該作者
5#
發(fā)表于 2025-3-22 08:49:02 | 只看該作者
Spatio-Temporal United Memory for Video Anomaly Detection,e AUC 96.92%, 87.43%, and 75.42% on UCSD Ped2, Avenue, and ShanghaiTech, respectively. Extensive experiments on three publicly available datasets demonstrate the excellent generalization and high effectiveness of the proposed method.
6#
發(fā)表于 2025-3-22 16:56:16 | 只看該作者
Self-supervised Out-of-Distribution Detection with Dynamic Latent Scale GAN,ual information of in-distribution data, and additional hyperparameters for prediction. The proposed method showed better out-of-distribution detection performance than the previous state-of-art method.
7#
發(fā)表于 2025-3-22 17:43:59 | 只看該作者
8#
發(fā)表于 2025-3-22 23:53:47 | 只看該作者
9#
發(fā)表于 2025-3-23 02:22:24 | 只看該作者
,Monte Carlo Dropout for?Uncertainty Analysis and?ECG Trace Image Classification,rld scenarios. We use ECG images dataset of cardiac and covid-19 patients containing five categories of data, which includes COVID-19 ECG records as well as data from other cardiovascular disorders. Our proposed model achieves 93.90% accuracy using this dataset.
10#
發(fā)表于 2025-3-23 09:05:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
房山区| 牙克石市| 遂平县| 成都市| 芮城县| 西乌| 榆树市| 张家港市| 特克斯县| 怀安县| 永清县| 天镇县| 白河县| 文登市| 芮城县| 五常市| 金坛市| 贵州省| 方正县| 洮南市| 申扎县| 平利县| 乐业县| 盐亭县| 达孜县| 绥阳县| 南木林县| 甘南县| 灵石县| 莲花县| 饶平县| 尚志市| 米易县| 上饶市| 盐亭县| 泰州市| 濉溪县| 绍兴市| 陵川县| 阜平县| 容城县|