找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Structural Wood Detailing in CAD Format; K. A. Zayat Book 1993 Springer Science+Business Media New York 1993 TJI.computer-aided design (CA

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 09:43:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:15:55 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
14#
發(fā)表于 2025-3-23 23:13:27 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
15#
發(fā)表于 2025-3-24 03:59:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:41:42 | 只看該作者
17#
發(fā)表于 2025-3-24 13:17:26 | 只看該作者
if ..?≡?5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that ..?≡?5 mod 103 and ..?≡?103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to ..?≡?3 mod 5, which clearly has no solutions. Hence neither does ..?≡
18#
發(fā)表于 2025-3-24 15:15:18 | 只看該作者
K. A. Zayat in Sect.?. we begin with a discussion of the results from algebraic number theory that will be required, with Dedekind’s Ideal Distribution Theorem as the final goal of this section. The zeta function of an algebraic number field is defined and studied in Sect.?.; in particular, the Euler-Dedekind
19#
發(fā)表于 2025-3-24 20:17:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绿春县| 天全县| 汽车| 壤塘县| 黎城县| 巩义市| 祁阳县| 西充县| 花莲县| 韩城市| 屏南县| 开江县| 浦城县| 图木舒克市| 武功县| 新乐市| 商城县| 安福县| 油尖旺区| 宽甸| 新野县| 文安县| 海阳市| 鄂尔多斯市| 建德市| 天等县| 江都市| 顺平县| 大悟县| 琼中| 枝江市| 庆云县| 周至县| 闽侯县| 象州县| 湖南省| 南充市| 秦皇岛市| 泾源县| 铜山县| 南乐县|