找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Strings, Conformal Fields, and M-Theory; Michio Kaku Textbook 2000Latest edition Springer Science+Business Media New York 2000 Second quan

[復(fù)制鏈接]
樓主: 極大
11#
發(fā)表于 2025-3-23 10:56:54 | 只看該作者
2D Gravity and Matrix Models tunneling, formation of strings, etc. As a consequence, two approximations have been developed, large . methods and lattice gauge theory, to analyze gauge theories in the nonperturbative regime. However, both approaches are still in their infancy, and neither has given us definitive results.
12#
發(fā)表于 2025-3-23 16:27:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:27:30 | 只看該作者
D-Branes and CFT/ADS Dualityg nonpertur-bative dualities since it is believed that these BPS states are not renormalized. However, we have not actually constructed these objects and explored their dual properties. This will be the subject of this chapter [1-4].
14#
發(fā)表于 2025-3-24 02:16:08 | 只看該作者
15#
發(fā)表于 2025-3-24 05:32:13 | 只看該作者
16#
發(fā)表于 2025-3-24 08:48:37 | 只看該作者
Textbook 2000Latest editionrs review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. This book conveys the vitality of the current research and places readers at its forefront.
17#
發(fā)表于 2025-3-24 10:51:41 | 只看該作者
18#
發(fā)表于 2025-3-24 14:59:30 | 只看該作者
String Field Theoryories can be constructed using the methods presented in the previous chapters, and there is absolutely no concrete way in which to choose which, if any, of these millions of vacuums corresponds to our real world.
19#
發(fā)表于 2025-3-24 20:13:50 | 只看該作者
Knot Theory and Quantum Groupsand knot theory. Surprisingly, we will be able to use quantum field theory to generate new knot polynomials and analytic expressions for them. Knot theory, in turn, will be a tool by which we study conformal field theories and statistical mechanics, giving us a topological meaning to the Yang-Baxter relation.
20#
發(fā)表于 2025-3-25 00:40:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 16:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湟源县| 固始县| 瓦房店市| 米泉市| 台北市| 和龙市| 凭祥市| 江西省| 庄河市| 武清区| 宁南县| 调兵山市| 兴仁县| 吉林省| 南乐县| 莱西市| 敦煌市| 黄浦区| 钟山县| 建平县| 武陟县| 琼结县| 喀喇沁旗| 梧州市| 堆龙德庆县| 平凉市| 蓬安县| 呼伦贝尔市| 太康县| 荆门市| 福泉市| 津南区| 达尔| 旌德县| 祁阳县| 淮南市| 新竹县| 南京市| 尉氏县| 乐昌市| 浦城县|