找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stokes–Darcy Equations; Analytic and Numeric Ulrich Wilbrandt Book 2019 Springer Nature Switzerland AG 2019 stokes-darcy.trace.sobolev spac

[復(fù)制鏈接]
樓主: 方面
21#
發(fā)表于 2025-3-25 06:48:07 | 只看該作者
22#
發(fā)表于 2025-3-25 10:54:08 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:56 | 只看該作者
,Stokes–Darcy Equations,Let . be a Lipschitz domain split into two disjoint nonempty subdomains .. and .. which are Lipschitz, too. The index . refers to the Darcy subdomain where a porous medium is modeled, while the index . refers to the free flow domain with a Stokes model.
24#
發(fā)表于 2025-3-25 18:15:56 | 只看該作者
Algorithms,The Neumann–Neumann as well as the Robin–Robin systems (.) and (.) along with their decoupled variants (.) and (.) can be solved iteratively.
25#
發(fā)表于 2025-3-25 22:23:05 | 只看該作者
Numerical Results,The algorithms described in Chap. . are implemented in the . finite element code . (Wilbrandt et al., Comput Math Appl 74(1):74–88, 2017). In this chapter several examples from the literature are introduced and numerical results shown. To begin with, a more general discussion on numerical examples is given.
26#
發(fā)表于 2025-3-26 01:44:59 | 只看該作者
Ulrich WilbrandtThorough guide to the coupling of Stokes and Darcy equations.Includes numerical analysis and scientific computing.Almost all intermediate results are given with a rigorous proof.Special care is taken
27#
發(fā)表于 2025-3-26 07:23:47 | 只看該作者
28#
發(fā)表于 2025-3-26 10:40:02 | 只看該作者
978-3-030-02903-6Springer Nature Switzerland AG 2019
29#
發(fā)表于 2025-3-26 15:41:29 | 只看該作者
Stokes–Darcy Equations978-3-030-02904-3Series ISSN 2297-0320 Series E-ISSN 2297-0339
30#
發(fā)表于 2025-3-26 20:21:19 | 只看該作者
o have appeared within the last 50 years.Provides comprehens.Recent Work on Intrinsic Value. brings together for the first time many of the most important and influential writings on the topic of intrinsic value to have appeared in the last half-century. During this period, inquiry into the nature o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连平县| 金湖县| 瑞昌市| 长丰县| 河间市| 通化市| 五家渠市| 玉溪市| 万山特区| 石城县| 财经| 齐齐哈尔市| 迁西县| 金阳县| 东阿县| 精河县| 绥宁县| 托里县| 开封市| 元朗区| 黔南| 吴江市| 青浦区| 萍乡市| 安宁市| 长顺县| 贵定县| 苗栗县| 石楼县| 宁津县| 怀化市| 乌苏市| 永宁县| 玛纳斯县| 枞阳县| 封丘县| 阳新县| 景宁| 昌江| 临高县| 南江县|