找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Ordinary and Stochastic Partial Differential Equations; Transition from Micr Peter Kotelenez Book 2008 Springer-Verlag New York

[復(fù)制鏈接]
查看: 48665|回復(fù): 50
樓主
發(fā)表于 2025-3-21 19:04:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations
副標(biāo)題Transition from Micr
編輯Peter Kotelenez
視頻videohttp://file.papertrans.cn/879/878072/878072.mp4
概述Includes supplementary material:
叢書名稱Stochastic Modelling and Applied Probability
圖書封面Titlebook: Stochastic Ordinary and Stochastic Partial Differential Equations; Transition from Micr Peter Kotelenez Book 2008 Springer-Verlag New York
描述The present volume analyzes mathematical models of time-dependent physical p- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting me- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1. 11. 6) we deal, “at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The - tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern. . . . At the macroscopic level we wish to study the corresponding spatial patterns. ” Typically, at the mac- scopic level, the systems under consideration are treated as spatially continuous systems such as ?uids or a continuous distribution of some chemical reactants, etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof 1 motion of the individual atoms or molecules. These equations are cast in the form 2 of systems of deterministic coupled nonlinear oscillators. The mesosco
出版日期Book 2008
關(guān)鍵詞Kotelenez; Macroscopic; Microscopic; Ordinary; Partial Differential Equations; Stochastic; Variance; partia
版次1
doihttps://doi.org/10.1007/978-0-387-74317-2
isbn_softcover978-1-4899-8658-0
isbn_ebook978-0-387-74317-2Series ISSN 0172-4568 Series E-ISSN 2197-439X
issn_series 0172-4568
copyrightSpringer-Verlag New York 2008
The information of publication is updating

書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations影響因子(影響力)




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations被引頻次




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations被引頻次學(xué)科排名




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations年度引用




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations年度引用學(xué)科排名




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations讀者反饋




書目名稱Stochastic Ordinary and Stochastic Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:45:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:33:35 | 只看該作者
Deterministic Dynamics in a Lattice Model and a Mesoscopic (Stochastic) Limit [0, .] . .-... . 2 . ?.?. . 1 ? . ? 4, . .. . .-. ..
地板
發(fā)表于 2025-3-22 06:24:42 | 只看該作者
Proof of the Mesoscopic Limit TheoremLet . ? ., . (.) be some cadlag process and . .(.) some (nice) occupation measure process with support in the cells. Assume that both . (.) and . .(.) are constant for . ∈ [(. — 1)δσ, δσ), . ∈ ..
5#
發(fā)表于 2025-3-22 09:16:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:37:27 | 只看該作者
7#
發(fā)表于 2025-3-22 20:06:07 | 只看該作者
8#
發(fā)表于 2025-3-22 23:42:55 | 只看該作者
https://doi.org/10.1007/978-0-387-74317-2Kotelenez; Macroscopic; Microscopic; Ordinary; Partial Differential Equations; Stochastic; Variance; partia
9#
發(fā)表于 2025-3-23 01:31:00 | 只看該作者
978-1-4899-8658-0Springer-Verlag New York 2008
10#
發(fā)表于 2025-3-23 08:38:19 | 只看該作者
Stochastic Ordinary and Stochastic Partial Differential Equations978-0-387-74317-2Series ISSN 0172-4568 Series E-ISSN 2197-439X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 19:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 海林市| 贺兰县| 临猗县| 河曲县| 静宁县| 庄浪县| 西宁市| 罗定市| 饶河县| 称多县| 阜新市| 博湖县| 汕尾市| 孝义市| 新宁县| 南宫市| 盐边县| 玉环县| 永福县| 盈江县| 绵阳市| 扶风县| 静乐县| 长治县| 中方县| 井研县| 泽库县| 白银市| 泰和县| 三亚市| 鄱阳县| 伊春市| 抚宁县| 福安市| 栾川县| 洪雅县| 吉首市| 合山市| 崇左市| 定陶县|