找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Optimal Control in Infinite Dimension; Dynamic Programming Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?ch Book 2017 Springer Intern

[復(fù)制鏈接]
查看: 38024|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:33:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Stochastic Optimal Control in Infinite Dimension
副標(biāo)題Dynamic Programming
編輯Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?ch
視頻videohttp://file.papertrans.cn/879/878053/878053.mp4
概述Provides a systematic survey of the main available results, with proofs and references.Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations in i
叢書名稱Probability Theory and Stochastic Modelling
圖書封面Titlebook: Stochastic Optimal Control in Infinite Dimension; Dynamic Programming  Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?ch Book 2017 Springer Intern
描述.Providing an introduction to stochastic optimal control in in?nite dimension, this book gives a complete account of the theory of second-order HJB equations in in?nite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in in?nite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in in?nite dimension. Readers from other ?elds who want to learn the basic theory will also ?nd it useful. The prerequisites are: standard functional analysis, the theory of semigroups of ope
出版日期Book 2017
關(guān)鍵詞49Lxx, 93E20, 49L20, 35R15, 35Q93, 49L25, 65H15, 37L55; stochastic optimal control; infinite dimension
版次1
doihttps://doi.org/10.1007/978-3-319-53067-3
isbn_softcover978-3-319-85053-5
isbn_ebook978-3-319-53067-3Series ISSN 2199-3130 Series E-ISSN 2199-3149
issn_series 2199-3130
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Stochastic Optimal Control in Infinite Dimension影響因子(影響力)




書目名稱Stochastic Optimal Control in Infinite Dimension影響因子(影響力)學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension網(wǎng)絡(luò)公開度




書目名稱Stochastic Optimal Control in Infinite Dimension網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension被引頻次




書目名稱Stochastic Optimal Control in Infinite Dimension被引頻次學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension年度引用




書目名稱Stochastic Optimal Control in Infinite Dimension年度引用學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension讀者反饋




書目名稱Stochastic Optimal Control in Infinite Dimension讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:28 | 只看該作者
Mild Solutions in Spaces of Continuous Functions, Hilbert spaces through a . which was first introduced in [147, 340] and then improved and developed in various subsequent papers like [89, 90, 306, 307, 317] and later [105, 107, 301, 309, 310, 431–434].
地板
發(fā)表于 2025-3-22 05:33:48 | 只看該作者
Preliminaries on Stochastic Calculus in Infinite Dimension,We recall some basic notions of measure theory and give a short introduction to random variables and the theory of the Bochner integral.
5#
發(fā)表于 2025-3-22 08:54:44 | 只看該作者
Optimal Control Problems and Examples,In this chapter we discuss the connection between the study of infinite-dimensional stochastic optimal control problems and that of second-order Hamilton–Jacobi–Bellman (HJB) equations in Hilbert spaces.
6#
發(fā)表于 2025-3-22 13:48:59 | 只看該作者
Viscosity Solutions,This chapter is devoted to the theory of viscosity solutions of Hamilton–Jacobi–Bellman equations in Hilbert spaces.
7#
發(fā)表于 2025-3-22 19:02:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:10:16 | 只看該作者
HJB Equations Through Backward Stochastic Differential Equations,This last chapter of the book completes the picture of the main methods used to study second-order HJB equations in Hilbert spaces and related optimal control problems by presenting a survey of results that can be achieved with the techniques of Backward SDEs in infinite dimension.
9#
發(fā)表于 2025-3-23 01:27:49 | 只看該作者
Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?chProvides a systematic survey of the main available results, with proofs and references.Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations in i
10#
發(fā)表于 2025-3-23 09:17:58 | 只看該作者
978-3-319-85053-5Springer International Publishing AG 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永康市| 大同县| 邵阳县| 株洲市| 鹿邑县| 即墨市| 阜新| 彩票| 宾阳县| 保定市| 湖口县| 肥东县| 永德县| 永安市| 雅安市| 巴楚县| 夏邑县| 西吉县| 潞西市| 婺源县| 永德县| 井研县| 天等县| 富宁县| 富民县| 甘孜| 灵石县| 四会市| 清流县| 福泉市| 怀集县| 西昌市| 连山| 枣强县| 吴桥县| 金华市| 新建县| 汝南县| 临邑县| 南昌县| 万年县|