找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Numerics for Mathematical Physics; Grigori N. Milstein,Michael V. Tretyakov Book 2021Latest edition Springer Nature Switzerland

[復(fù)制鏈接]
樓主: quick-relievers
31#
發(fā)表于 2025-3-26 23:56:41 | 只看該作者
Numerical Methods for SDEs with Small Noise,fficient than general methods. Very often fluctuations, which affect a physical system, are small. Fortunately, as shown in this chapter, in the case of stochastic systems with small noise, it is possible to construct special high-exactness numerical methods with low time-step order and hence comput
32#
發(fā)表于 2025-3-27 01:43:40 | 只看該作者
33#
發(fā)表于 2025-3-27 06:05:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:34:10 | 只看該作者
Random Walks for Linear Boundary Value Problems,ter . deals with mean-square approximations of SDEs in bounded domains, and its results can be applied for solving boundary value problems. However, since solutions of boundary value problems for parabolic and elliptic equations can be represented as expectations of solutions of the corresponding sy
35#
發(fā)表于 2025-3-27 17:39:54 | 只看該作者
36#
發(fā)表于 2025-3-27 21:28:34 | 只看該作者
37#
發(fā)表于 2025-3-27 22:34:19 | 只看該作者
Solving FBSDEs Using Layer Methods, FBSDEs are associated with semilinear or quasilinear PDEs. In turn, solutions of the PDEs have probabilistic representations via the FBSDEs, which are a generalization of the Feynman-Kac formula. The chapter presents numerical algorithms for solving FBSDEs in the mean-square sense. In both cases of
38#
發(fā)表于 2025-3-28 03:18:32 | 只看該作者
Solving Parabolic SPDEs by Averaging Over Characteristics,losely related to the nonlinear filtering problem. In this chapter the method of characteristics (the generalised Feynman-Kac formula) and numerical integration of (ordinary) SDEs together with the Monte Carlo technique are exploited to propose numerical methods for linear SPDEs of parabolic type. T
39#
發(fā)表于 2025-3-28 08:22:49 | 只看該作者
40#
發(fā)表于 2025-3-28 11:47:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-2 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永定县| 昭苏县| 同仁县| 和田县| 甘南县| 余庆县| 奎屯市| 揭东县| 景泰县| 扶余县| 晋中市| 晋宁县| 上饶市| 时尚| 建始县| 甘南县| 武隆县| 东明县| 探索| 孙吴县| 揭东县| 措勤县| 边坝县| 金山区| 团风县| 关岭| 司法| 松桃| 宾川县| 页游| 崇信县| 宁晋县| 黑龙江省| 屯昌县| 海晏县| 元氏县| 恩施市| 富裕县| 奇台县| 姚安县| 天柱县|