找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Neutron Transport; And Non-Local Branch Emma Horton,Andreas E. Kyprianou Book 2023 The Editor(s) (if applicable) and The Author(

[復制鏈接]
樓主: 古生物學
11#
發(fā)表于 2025-3-23 12:41:01 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:34 | 只看該作者
13#
發(fā)表于 2025-3-23 18:24:46 | 只看該作者
14#
發(fā)表于 2025-3-23 23:24:34 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:55 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:31 | 只看該作者
Classical Neutron Transport Theorymily of radiation transport equations, all of which are variants of a general category of Boltzmann transport equations. Our objective in this book is to assemble some of the main mathematical ideas around neutron transport and their relationship with the modern theory of branching Markov processes.
17#
發(fā)表于 2025-3-24 11:35:09 | 只看該作者
Some Background Markov Process Theoryepeatedly in our calculations. After a brief reminder of some basics around the Markov property, we will focus our attention on what we will call expectation semigroups. These are the tools that we will use to identify neutron density and provide an alternative representation of solutions to the NTE
18#
發(fā)表于 2025-3-24 15:13:22 | 只看該作者
19#
發(fā)表于 2025-3-24 20:50:52 | 只看該作者
Many-to-One, Perron–Frobenius and Criticalityl in this respect is to understand how to provide a rigorous analogue of the spectral asymptotic behaviour given in Theorem . for the NTE as an . solution but now for the setting of . solutions that emerge from our mild NTE formulation (.). The way we will do this is to draw the general Perron–Frobe
20#
發(fā)表于 2025-3-24 23:42:22 | 只看該作者
Pál–Bell Equation and Moment Growth we can glean about the NBP from the NTE. Recall that the NBP is fundamentally our physical model of fission in an inhomogeneous material and so many questions will go beyond what linear equations can tell us. In this respect, our starting point is the Pál–Bell equation, a non-linear equation which
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 22:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平泉县| 南阳市| 聂荣县| 花莲县| 泌阳县| 江达县| 无棣县| 和平县| 正蓝旗| 客服| 遵义市| 兰溪市| 密山市| 民乐县| 老河口市| 枞阳县| 剑川县| 淳安县| 江津市| 青冈县| 贺兰县| 图们市| 子洲县| 宿松县| 繁昌县| 凌云县| 墨玉县| 方山县| 北流市| 株洲县| 莲花县| 镇雄县| 两当县| 湖州市| 富锦市| 武陟县| 万州区| 康马县| 昌黎县| 永康市| 天津市|